158 resultados para Bone Marrow Transplantation

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Australian Bone Marrow Donor Registry (ABMDR) is a publicly funded company that is part of an international network that facilitates unrelated bone marrow transplantation. This role means that the ABMDR has access to a large biospecimen repository, therefore making it a highly valuable research resource. Recognising the potential value of these biospecimens for research purposes, the ABMDR is in the process of determining whether, and how, to share its biospecimens with other biobanks. While this would undoubtedly be of value to the scientific community, and ultimately to the wider community, it would also inevitably transform the role of an institution whose primary role is therapeutic, and would compromise the degree of control that a custodian has over donated material. This article describe the challenges confronting the ABMDR, and organisations like it, in balancing their duties to donors, patients, researchers and the general public. These problems have led inevitably to the use of "property" rights language in the discussion of these issues but notions of gift, ownership, trusteeship and transfer might also be considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct bone marrow (BM) injection has been proposed as a strategy to bypass homing inefficiencies associated with intravenous (IV) hematopoietic stem cell (HSC) transplantation. Despite physical delivery into the BM cavity, many donor cells are rapidly redistributed by vascular perfusion, perhaps compromising efficacy. Anchoring donor cells to 3-dimensional (3D) multicellular spheroids, formed from mesenchymal stem/stromal cells (MSC) might improve direct BM transplantation. To test this hypothesis, relevant combinations of human umbilical cord blood-derived CD34(+) cells and BM-derived MSC were transplanted into NOD/SCID gamma (NSG) mice using either IV or intrafemoral (IF) routes. IF transplantation resulted in higher human CD45(+) and CD34(+) cell engraftment within injected femurs relative to distal femurs regardless of cell combination, but did not improve overall CD45(+) engraftment at 8 weeks. Analysis within individual mice revealed that despite engraftment reaching near saturation within the injected femur, engraftment at distal hematopoietic sites including peripheral blood, spleen and non-injected femur, could be poor. Our data suggest that the retention of human HSC within the BM following direct BM injection enhances local chimerism at the expense of systemic chimerism in this xenogeneic model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs) are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b) are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP) could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as well as contributing to the ongoing controversy about differentiation capacities of MSCs. Therefore, further studies need to consider the differences between donor samples prior to any treatment as well as the possibility of harvesting donor cells that may be inappropriate for transplantation strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracellular matrix (ECM) materials are widely used in cartilage tissue engineering. However, the current ECM materials are unsatisfactory for clinical practice as most of them are derived from allogenous or xenogenous tissue. This study was designed to develop a novel autologous ECM scaffold for cartilage tissue engineering. The autologous bone marrow mesenchymal stem cell-derived ECM (aBMSC-dECM) membrane was collected and fabricated into a three-dimensional porous scaffold via cross-linking and freeze-drying techniques. Articular chondrocytes were seeded into the aBMSC-dECM scaffold and atelocollagen scaffold, respectively. An in vitro culture and an in vivo implantation in nude mice model were performed to evaluate the influence on engineered cartilage. The current results showed that the aBMSC-dECM scaffold had a good microstructure and biocompatibility. After 4 weeks in vitro culture, the engineered cartilage in the aBMSC-dECM scaffold group formed thicker cartilage tissue with more homogeneous structure and higher expressions of cartilaginous gene and protein compared with the atelocollagen scaffold group. Furthermore, the engineered cartilage based on the aBMSC-dECM scaffold showed better cartilage formation in terms of volume and homogeneity, cartilage matrix content, and compressive modulus after 3 weeks in vivo implantation. These results indicated that the aBMSC-dECM scaffold could be a successful novel candidate scaffold for cartilage tissue engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to determine the cellular aging of osteophyte-derived mesenchymal cells (oMSCs) in comparison to patient-matched bone marrow stromal cells (bMSCs). Extensive expansion of the cell cultures was performed and early and late passage cells (passages 4 and 9, respectively) were used to study signs of cellular aging, telomere length, telomerase activity, and cell-cycle-related gene expression. Our results showed that cellular aging was more prominent in bMSCs than in oMSCs, and that oMSCs had longer telomere length in late passages compared with bMSCs, although there was no significant difference in telomere lengths in the early passages in either cell type. Telomerase activity was detectable only in early passage oMSCs and not in bMSCs. In osteophyte tissues telomerase-positive cells were found to be located perivascularly and were Stro-1 positive. Fifteen cell-cycle regulator genes were investigated and only three genes (APC, CCND2, and BMP2) were differentially expressed between bMSC and oMSC. Our results indicate that oMSCs retain a level of telomerase activity in vitro, which may account for the relatively greater longevity of these cells, compared with bMSCs, by preventing replicative senescence. J. Cell. Biochem. 108: 839-850, 2009. (c) 2009 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To enhance and regulate cell affinity for poly (l-lactic acid) (PLLA) based materials, two hydrophilic ligands, poly (ethylene glycol) (PEG) and poly (l-lysine) (PLL), were used to develop triblock copolymers: methoxy-terminated poly (ethylene glycol)-block-poly (l-lactide)-block-poly (l-lysine) (MPEG-b-PLLA-b-PLL) in order to regulate protein absorption and cell adhesion. Bone marrow stromal cells (BMSCs) were cultured on different composition of MPEG-b-PLLA-b-PLL copolymer films to determine the effect of modified polymer surfaces on BMSC attachment. To understand the molecular mechanism governing the initial cell adhesion on difference polymer surfaces, the mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analysed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). It was found that down regulation of adhesion molecules was responsible for the impaired BMSC attachment on PLLA surface. MPEG-b-PLLA-b-PLL copolymer films improved significantly the cell adhesion and cytoskeleton expression by upregulation of relevant molecule genes significantly. Six adhesion genes (CDH1, ITGL, NCAM1, SGCE, COL16A1, and LAMA3) were most significantly influenced by the modified PLLA surfaces. In summary, polymer surfaces altered adhesion molecule gene expression of BMSCs, which consequently regulated cell initial attachment on modified PLLA surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Application of cell-–biomaterial systems in regenerative medicine can be facilitated by their successful low temperature preservation. Vitrification, which avoids ice crystal formation by amorphous solidification, is an emerging approach to cryopreservation. Developing vitrification strategy, effective cryopreservation of alginate–fibrin beads with porcine mesenchymal stromal cells has been achieved in this study. The cell–biomaterial constructs were pre-cultured for 20 days before cryopreservation, allowing for cell proliferation and construct stabilization. Ethylene glycol (EG) was employed as the basic cryoprotectant for two equilibration solutions. Successful cryopreservation of the constructs was achieved using vitrification solution composed of penetrating (EG MW 62 Da) and non-penetrating (sucrose MW 342 Da) cryoprotectants. Stepwise procedure of introduction to and removal of cryoprotectants was brief; direct plunging into liquid nitrogen was applied. Cell viability, evaluated by combining live/death staining and confocal laser microscopy, was similar for both control and vitrified cells in the beads. No detectable damage of microstructure of cryopreserved beads was found as shown by scanning electron microscopy. Both osteogenically induced control and vitrified cells in the constructs were equally capable of mineral production and deposition. There was no statistically significant difference in metabolic activity and proliferation between both groups during the entire culture period. Our study leads to the conclusion that the developed cryopreservation protocol allowed to maintain the integrity of the beads while preserving the ability of the pig bone marrow derived mesenchymal stromal cells to proliferate and subsequently differentiate; demonstrating that vitrification is a promising approach for cryopreser-vation of “ready-to-use” cell–biomaterial constructs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The repair of large non-unions in long bones remains a significant clinical problem due to high failure rates and limited tissue availability for auto- and allografts. Many cell-based strategies for healing bone defects deliver bone marrow stromal cells to the defect site to take advantage of the inherent osteogenic capacity of this cell type. However, many factors, including donor age and ex vivo expansion of the cells, cause bone marrow stromal cells to lose their differentiation ability. To overcome these limitations, we have genetically engineered bone marrow stromal cells to constitutively overexpress the osteoblast specific transcription factor Runx2. In the present study, we examined Runx2-modified bone marrow stromal cells, delivered via poly(caprolactone) scaffolds loaded with type I collagen meshes, in critically-sized segmental defects in rats compared to unmodified cells, cell-free scaffolds and empty defects. Runx2 expression in bone marrow stromal cells accelerated healing of critically-sized defects compared to unmodified bone marrow stromal cells and defects receiving cell-free treatments. These findings provide an accelerated method for healing large bone defects which may reduce recovery time and the need for external fixation of critically-sized defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The periosteum plays an indispensable role in both bone formation and bone defect healing. In this study we constructed an artificial in vitro periosteum by incorporating osteogenic differentiated bone marrow stromal cells (BMSCs) and cobalt chloride (CoCl(2))-treated BMSCs. The engineered periostea were implanted both subcutaneously and into skull bone defects in SCID mice to investigate ectopic and orthotopic osteogenesis and vascularization. After two weeks in subcutaneous and four weeks in bone defect areas, the implanted constructs were assessed for ectopic and orthotopic osteogenesis and vascularization by micro-CT, histomorphometrical and immunohistochemical methods. The results showed that CoCl(2) pre-treated BMSCs induced higher degree of vascularization and enhanced osteogenesis within the implants in both ectopic and orthotopic areas. This study provided a novel approach using BMSCs sourced from the same patient for both osteogenic and pro-angiogenic purposes in constructing tissue engineered periosteum to enhance vascularized osteogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decline in the frequency of potent mesenchymal stem cells (MSCs) has been implicated in ageing and degenerative diseases. Increasing the circulating stem cell population can lead to renewed recruitment of these potent cells at sites of damage. Therefore, identifying the ideal cells for ex vivo expansion will form a major pursuit of clinical applications. This study is a follow-up of previous work that demonstrated the occurrence of fast-growing multipotential cells from the bone marrow samples. To investigate the molecular processes involved in the existence of such varying populations, gene expression studies were performed between fast- and slow-growing clonal populations to identify potential genetic markers associated with stemness using the quantitative real-time polymerase chain reaction comprising a series of 84 genes related to stem cell pathways. A group of 10 genes were commonly overrepresented in the fast-growing stem cell clones. These included genes that encode proteins involved in the maintenance of embryonic and neural stem cell renewal (sex-determining region Y-box 2, notch homolog 1, and delta-like 3), proteins associated with chondrogenesis (aggrecan and collagen 2 A1), growth factors (bone morphogenetic protein 2 and insulin-like growth factor 1), an endodermal organogenesis protein (forkhead box a2), and proteins associated with cell-fate specification (fibroblast growth factor 2 and cell division cycle 2). Expression of diverse differentiation genes in MSC clones suggests that these commonly expressed genes may confer the maintenance of multipotentiality and self-renewal of MSCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluate the potential of heparin as a substrate component for the fabrication of bone tissue engineering constructs using poly(e- caprolactone)–tricalcium phosphate–collagen type I (PCL–TCP–Col) three-dimensional (3-D) scaffolds. First we explored the ability of porcine bone marrow precursor cells (MPCs) to differentiate down both the adipogenic and osteogenic pathways within 2-D culture systems, with positive results confirmed by Oil-Red-O and Alizarin Red staining, respectively. Secondly, we examined the influence of heparin on the interaction and behaviour of MPCs when seeded onto PCL–TCP–Col 3-D scaffolds, followed by their induction into the osteogenic lineage. Our 3-D findings suggest that cell metabolism and proliferation increased between days 1 and 14, with deposition of extracellular matrix also observed up to 28 days. However, no noticeable difference could be detected in the extent of osteogenesis for PCL–TCP–Col scaffolds groups with the addition of heparin compared to identical control scaffolds without the addition of heparin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High renewal and maintenance of multipotency of human adult stem cells (hSCs), are a prerequisite for experimental analysis as well as for potential clinical usages. The most widely used strategy for hSC culture and proliferation is using serum. However, serum is poorly defined and has a considerable degree of inter-batch variation, which makes it difficult for large-scale mesenchymal stem cells (MSCs) expansion in homogeneous culture conditions. Moreover, it is often observed that cells grown in serum-containing media spontaneously differentiate into unknown and/or undesired phenotypes. Another way of maintaining hSC development is using cytokines and/or tissue-specific growth factors; this is a very expensive approach and can lead to early unwanted differentiation. In order to circumvent these issues, we investigated the role of sphingosine-1-phosphate (S1P), in the growth and multipotency maintenance of human bone marrow and adipose tissue-derived MSCs. We show that S1P induces growth, and in combination with reduced serum, or with the growth factors FGF and platelet-derived growth factor-AB, S1P has an enhancing effect on growth. We also show that the MSCs cultured in S1P-supplemented media are able to maintain their differentiation potential for at least as long as that for cells grown in the usual serum-containing media. This is shown by the ability of cells grown in S1P-containing media to be able to undergo osteogenic as well as adipogenic differentiation. This is of interest, since S1P is a relatively inexpensive natural product, which can be obtained in homogeneous high-purity batches: this will minimize costs and potentially reduce the unwanted side effects observed with serum. Taken together, S1P is able to induce proliferation while maintaining the multipotency of different human stem cells, suggesting a potential for S1P in developing serum-free or serum-reduced defined medium for adult stem cell cultures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue engineering allows the design of functionally active cells within supportive bio-scaffolds to promote the development of new tissues such as cartilage and bone for the restoration of pathologically altered tissues. However, all bone tissue engineering applications are limited by a shortage of stem cells. The adult bone marrow stroma contains a subset of nonhematopoietic cells referred to as bone marrow mesenchymal stem cells (BMSCs). BMSCs are of interest because they are easily isolated from a small aspirate of bone marrow and readily generate single- cell-derived colonies. These cells have the capacity to undergo extensive replication in an undifferentiated state ex vivo. In addition, BMSCs have the potential to develop either in vitro or in vivo into distinct mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Thus, BMSCs are an attractive cell source for tissue engineering approaches. However, BMSCs are not homo- geneous and the quantity of stem cells decreases in the bone marrow in aged population. A sequential loss of lineage differentiation potential has been found in the mixed culture of bone marrow stromal cells due to a heterogenous popu- lation. Therefore, a number of studies have proposed that homogenous bone marrow stem cells can be generated from clonal culture of bone marrow cells and that BMSC clones have the greatest potential for the application of bone regeneration in vivo