287 resultados para Bayesian statistical decision theory
em Queensland University of Technology - ePrints Archive
Resumo:
Statisticians along with other scientists have made significant computational advances that enable the estimation of formerly complex statistical models. The Bayesian inference framework combined with Markov chain Monte Carlo estimation methods such as the Gibbs sampler enable the estimation of discrete choice models such as the multinomial logit (MNL) model. MNL models are frequently applied in transportation research to model choice outcomes such as mode, destination, or route choices or to model categorical outcomes such as crash outcomes. Recent developments allow for the modification of the potentially limiting assumptions of MNL such as the independence from irrelevant alternatives (IIA) property. However, relatively little transportation-related research has focused on Bayesian MNL models, the tractability of which is of great value to researchers and practitioners alike. This paper addresses MNL model specification issues in the Bayesian framework, such as the value of including prior information on parameters, allowing for nonlinear covariate effects, and extensions to random parameter models, so changing the usual limiting IIA assumption. This paper also provides an example that demonstrates, using route-choice data, the considerable potential of the Bayesian MNL approach with many transportation applications. This paper then concludes with a discussion of the pros and cons of this Bayesian approach and identifies when its application is worthwhile
Resumo:
Provides an accessible foundation to Bayesian analysis using real world models This book aims to present an introduction to Bayesian modelling and computation, by considering real case studies drawn from diverse fields spanning ecology, health, genetics and finance. Each chapter comprises a description of the problem, the corresponding model, the computational method, results and inferences as well as the issues that arise in the implementation of these approaches. Case Studies in Bayesian Statistical Modelling and Analysis: •Illustrates how to do Bayesian analysis in a clear and concise manner using real-world problems. •Each chapter focuses on a real-world problem and describes the way in which the problem may be analysed using Bayesian methods. •Features approaches that can be used in a wide area of application, such as, health, the environment, genetics, information science, medicine, biology, industry and remote sensing. Case Studies in Bayesian Statistical Modelling and Analysis is aimed at statisticians, researchers and practitioners who have some expertise in statistical modelling and analysis, and some understanding of the basics of Bayesian statistics, but little experience in its application. Graduate students of statistics and biostatistics will also find this book beneficial.
Resumo:
The primary goal of a phase I trial is to find the maximally tolerated dose (MTD) of a treatment. The MTD is usually defined in terms of a tolerable probability, q*, of toxicity. Our objective is to find the highest dose with toxicity risk that does not exceed q*, a criterion that is often desired in designing phase I trials. This criterion differs from that of finding the dose with toxicity risk closest to q*, that is used in methods such as the continual reassessment method. We use the theory of decision processes to find optimal sequential designs that maximize the expected number of patients within the trial allocated to the highest dose with toxicity not exceeding q*, among the doses under consideration. The proposed method is very general in the sense that criteria other than the one considered here can be optimized and that optimal dose assignment can be defined in terms of patients within or outside the trial. It includes as an important special case the continual reassessment method. Numerical study indicates the strategy compares favourably with other phase I designs.
Resumo:
Bayesian experimental design is a fast growing area of research with many real-world applications. As computational power has increased over the years, so has the development of simulation-based design methods, which involve a number of algorithms, such as Markov chain Monte Carlo, sequential Monte Carlo and approximate Bayes methods, facilitating more complex design problems to be solved. The Bayesian framework provides a unified approach for incorporating prior information and/or uncertainties regarding the statistical model with a utility function which describes the experimental aims. In this paper, we provide a general overview on the concepts involved in Bayesian experimental design, and focus on describing some of the more commonly used Bayesian utility functions and methods for their estimation, as well as a number of algorithms that are used to search over the design space to find the Bayesian optimal design. We also discuss other computational strategies for further research in Bayesian optimal design.
Resumo:
A flexible and simple Bayesian decision-theoretic design for dose-finding trials is proposed in this paper. In order to reduce the computational burden, we adopt a working model with conjugate priors, which is flexible to fit all monotonic dose-toxicity curves and produces analytic posterior distributions. We also discuss how to use a proper utility function to reflect the interest of the trial. Patients are allocated based on not only the utility function but also the chosen dose selection rule. The most popular dose selection rule is the one-step-look-ahead (OSLA), which selects the best-so-far dose. A more complicated rule, such as the two-step-look-ahead, is theoretically more efficient than the OSLA only when the required distributional assumptions are met, which is, however, often not the case in practice. We carried out extensive simulation studies to evaluate these two dose selection rules and found that OSLA was often more efficient than two-step-look-ahead under the proposed Bayesian structure. Moreover, our simulation results show that the proposed Bayesian method's performance is superior to several popular Bayesian methods and that the negative impact of prior misspecification can be managed in the design stage.
Resumo:
Stallard (1998, Biometrics 54, 279-294) recently used Bayesian decision theory for sample-size determination in phase II trials. His design maximizes the expected financial gains in the development of a new treatment. However, it results in a very high probability (0.65) of recommending an ineffective treatment for phase III testing. On the other hand, the expected gain using his design is more than 10 times that of a design that tightly controls the false positive error (Thall and Simon, 1994, Biometrics 50, 337-349). Stallard's design maximizes the expected gain per phase II trial, but it does not maximize the rate of gain or total gain for a fixed length of time because the rate of gain depends on the proportion: of treatments forwarding to the phase III study. We suggest maximizing the rate of gain, and the resulting optimal one-stage design becomes twice as efficient as Stallard's one-stage design. Furthermore, the new design has a probability of only 0.12 of passing an ineffective treatment to phase III study.
Resumo:
The research objectives of this thesis were to contribute to Bayesian statistical methodology by contributing to risk assessment statistical methodology, and to spatial and spatio-temporal methodology, by modelling error structures using complex hierarchical models. Specifically, I hoped to consider two applied areas, and use these applications as a springboard for developing new statistical methods as well as undertaking analyses which might give answers to particular applied questions. Thus, this thesis considers a series of models, firstly in the context of risk assessments for recycled water, and secondly in the context of water usage by crops. The research objective was to model error structures using hierarchical models in two problems, namely risk assessment analyses for wastewater, and secondly, in a four dimensional dataset, assessing differences between cropping systems over time and over three spatial dimensions. The aim was to use the simplicity and insight afforded by Bayesian networks to develop appropriate models for risk scenarios, and again to use Bayesian hierarchical models to explore the necessarily complex modelling of four dimensional agricultural data. The specific objectives of the research were to develop a method for the calculation of credible intervals for the point estimates of Bayesian networks; to develop a model structure to incorporate all the experimental uncertainty associated with various constants thereby allowing the calculation of more credible credible intervals for a risk assessment; to model a single day’s data from the agricultural dataset which satisfactorily captured the complexities of the data; to build a model for several days’ data, in order to consider how the full data might be modelled; and finally to build a model for the full four dimensional dataset and to consider the timevarying nature of the contrast of interest, having satisfactorily accounted for possible spatial and temporal autocorrelations. This work forms five papers, two of which have been published, with two submitted, and the final paper still in draft. The first two objectives were met by recasting the risk assessments as directed, acyclic graphs (DAGs). In the first case, we elicited uncertainty for the conditional probabilities needed by the Bayesian net, incorporated these into a corresponding DAG, and used Markov chain Monte Carlo (MCMC) to find credible intervals, for all the scenarios and outcomes of interest. In the second case, we incorporated the experimental data underlying the risk assessment constants into the DAG, and also treated some of that data as needing to be modelled as an ‘errors-invariables’ problem [Fuller, 1987]. This illustrated a simple method for the incorporation of experimental error into risk assessments. In considering one day of the three-dimensional agricultural data, it became clear that geostatistical models or conditional autoregressive (CAR) models over the three dimensions were not the best way to approach the data. Instead CAR models are used with neighbours only in the same depth layer. This gave flexibility to the model, allowing both the spatially structured and non-structured variances to differ at all depths. We call this model the CAR layered model. Given the experimental design, the fixed part of the model could have been modelled as a set of means by treatment and by depth, but doing so allows little insight into how the treatment effects vary with depth. Hence, a number of essentially non-parametric approaches were taken to see the effects of depth on treatment, with the model of choice incorporating an errors-in-variables approach for depth in addition to a non-parametric smooth. The statistical contribution here was the introduction of the CAR layered model, the applied contribution the analysis of moisture over depth and estimation of the contrast of interest together with its credible intervals. These models were fitted using WinBUGS [Lunn et al., 2000]. The work in the fifth paper deals with the fact that with large datasets, the use of WinBUGS becomes more problematic because of its highly correlated term by term updating. In this work, we introduce a Gibbs sampler with block updating for the CAR layered model. The Gibbs sampler was implemented by Chris Strickland using pyMCMC [Strickland, 2010]. This framework is then used to consider five days data, and we show that moisture in the soil for all the various treatments reaches levels particular to each treatment at a depth of 200 cm and thereafter stays constant, albeit with increasing variances with depth. In an analysis across three spatial dimensions and across time, there are many interactions of time and the spatial dimensions to be considered. Hence, we chose to use a daily model and to repeat the analysis at all time points, effectively creating an interaction model of time by the daily model. Such an approach allows great flexibility. However, this approach does not allow insight into the way in which the parameter of interest varies over time. Hence, a two-stage approach was also used, with estimates from the first-stage being analysed as a set of time series. We see this spatio-temporal interaction model as being a useful approach to data measured across three spatial dimensions and time, since it does not assume additivity of the random spatial or temporal effects.
Resumo:
This thesis progresses Bayesian experimental design by developing novel methodologies and extensions to existing algorithms. Through these advancements, this thesis provides solutions to several important and complex experimental design problems, many of which have applications in biology and medicine. This thesis consists of a series of published and submitted papers. In the first paper, we provide a comprehensive literature review on Bayesian design. In the second paper, we discuss methods which may be used to solve design problems in which one is interested in finding a large number of (near) optimal design points. The third paper presents methods for finding fully Bayesian experimental designs for nonlinear mixed effects models, and the fourth paper investigates methods to rapidly approximate the posterior distribution for use in Bayesian utility functions.
Resumo:
The use of expert knowledge to quantify a Bayesian Network (BN) is necessary when data is not available. This however raises questions regarding how opinions from multiple experts can be used in a BN. Linear pooling is a popular method for combining probability assessments from multiple experts. In particular, Prior Linear Pooling (PrLP), which pools opinions then places them into the BN is a common method. This paper firstly proposes an alternative pooling method, Posterior Linear Pooling (PoLP). This method constructs a BN for each expert, then pools the resulting probabilities at the nodes of interest. Secondly, it investigates the advantages and disadvantages of using these pooling methods to combine the opinions of multiple experts. Finally, the methods are applied to an existing BN, the Wayfinding Bayesian Network Model, to investigate the behaviour of different groups of people and how these different methods may be able to capture such differences. The paper focusses on 6 nodes Human Factors, Environmental Factors, Wayfinding, Communication, Visual Elements of Communication and Navigation Pathway, and three subgroups Gender (female, male),Travel Experience (experienced, inexperienced), and Travel Purpose (business, personal) and finds that different behaviors can indeed be captured by the different methods.