113 resultados para animal models, neutrophils, platelets, sheep, TRALI, two-event


Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a successful clinical outcome, periodontal regeneration requires the coordinated response of multiple soft and hard tissues (periodontal ligament, gingiva, cementum, and bone) during the wound-healing process. Tissue-engineered constructs for regeneration of the periodontium must be of a complex 3-dimensional shape and adequate size and demonstrate biomechanical stability over time. A critical requirement is the ability to promote the formation of functional periodontal attachment between regenerated alveolar bone, and newly formed cementum on the root surface. This review outlines the current advances in multiphasic scaffold fabrication and how these scaffolds can be combined with cell- and growth factor-based approaches to form tissue-engineered constructs capable of recapitulating the complex temporal and spatial wound-healing events that will lead to predictable periodontal regeneration. This can be achieved through a variety of approaches, with promising strategies characterized by the use of scaffolds that can deliver and stabilize cells capable of cementogenesis onto the root surface, provide biomechanical cues that encourage perpendicular alignment of periodontal fibers to the root surface, and provide osteogenic cues and appropriate space to facilitate bone regeneration. Progress on the development of multiphasic constructs for periodontal tissue engineering is in the early stages of development, and these constructs need to be tested in large animal models and, ultimately, human clinical trials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proinflammatory cytokine IL-17 has an important role in pathogenesis of several inflammatory diseases. In immune-mediated joint diseases, IL-17 can induce secretion of other proinflammatory cytokines such as IL-1, IL-6 and TNF, as well as matrix metalloproteinase enzymes, leading to inflammation, cartilage breakdown, osteoclastogenesis and bone erosion. In animal models of inflammatory arthritis, mice deficient in IL-17 are less susceptible to development of disease. The list of IL-17-secreting cells is rapidly growing, and mast cells have been suggested to be a dominant source of IL-17 in inflammatory joint disease. However, many other innate sources of IL-17 have been described in both inflammatory and autoinflammatory conditions, raising questions as to the role of mast cells in orchestrating joint inflammation. This article will critically assess the contribution of mast cells and other cell types to IL-17 production in the inflammatory milieu associated with inflammatory arthritis, understanding of which could facilitate targeted therapeutic approaches. © 2013 Macmillan Publishers Limited. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urinary tract infections (UTIs) are among the most common bacterial infections in humans. Murine models of human UTI are vital experimental tools that have helped to elucidate UTI pathogenesis and advance knowledge of potential treatment and infection prevention strategies. Fundamentally, several variables are inherent in different murine models, and understanding the limitations of these variables provides an opportunity to understand how models may be best applied to research aimed at mimicking human disease. In this review, we discuss variables inherent in murine UTI model studies and how these affect model usage, data analysis and data interpretation. We examine recent studies that have elucidated UTI host–pathogen interactions from the perspective of gene expression, and review new studies of biofilm and UTI preventative approaches. We also consider potential standards for variables inherent in murine UTI models and discuss how these might expand the utility of models for mimicking human disease and uncovering new aspects of pathogenesis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alcohol addiction is a debilitating disorder producing maladaptive changes in the brain, leading drinkers to become more sensitive to stress and anxiety. These changes are key factors contributing to alcohol craving and maintaining a persistent vulnerability to relapse. Serotonin (5-Hydroxytryptamine, 5-HT) is a monoamine neurotransmitter widely expressed in the central nervous system where it plays an important role in the regulation of mood. The serotonin system has been extensively implicated in the regulation of stress and anxiety, as well as the reinforcing properties of all of the major classes of drugs of abuse, including alcohol. Dysregulation within the 5-HT system has been postulated to underlie the negative mood states associated with alcohol use disorders. This review will describe the serotonergic (5-HTergic) neuroplastic changes observed in animal models throughout the alcohol addiction cycle, from prenatal to adulthood exposure. The first section will focus on alcohol-induced 5-HTergic neuroadaptations in offspring prenatally exposed to alcohol and the consequences on the regulation of stress/anxiety. The second section will compare alterations in 5-HT signalling induced by acute or chronic alcohol exposure during adulthood and following alcohol withdrawal, highlighting the impact on the regulation of stress/anxiety signalling pathways. The third section will outline 5-HTergic neuroadaptations observed in various genetically-selected ethanol preferring rat lines. Finally, we will discuss the pharmacological manipulation of the 5-HTergic system on ethanol- and anxiety/stress-related behaviours demonstrated by clinical trials, with an emphasis on current and potential treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Forward head postures (FHP) are proposed to adversely load cervical spine structures. Neck muscles provide support for the neck, and thus an imbalance in neck muscle performance could potentially contribute to the development of FHP. Previous studies have not considered the interaction of multiple muscle groups with regard to postural orientation. Given the interdependence of muscles along the cervical spine for optimal orientation and physical support of the vertebral column, the performance of a single muscle group may not accurately reflect the coordinated ability of the muscles to maintain a neutral neck posture. Purpose The purpose of this study was to investigate the relationship between FHP and the balance between the cervical extensor and flexor muscle groups in healthy individuals. We hypothesised that the magnitude of FHP would be associated with the strength and endurance performance ratios between the cervical extensor and flexor muscle groups. Methods Twenty male and 24 female volunteers were photographed in the sagittal plane wearing surface markers. The FHP of each participant was measured via the tragus-sternum marker distance over two conditions: (1)in relaxed standing and (2)during a sustained sitting task. Maximal strength (Nm) and endurance (s) performance of the extensor and flexor muscle groups were recorded at the upper (craniocervical flexion/extension (CCF/CCE)) and lower (cervicothoracic flexion/extension (CTF/CTE)) cervical regions. Muscle performance measures were expressed as extension:flexion ratios and their relation to FHP evaluated. A stepwise multiple regression analysis using backward elimination was utilised to examine the relationship between the postural measures and the muscle performance ratio measures. Separate models were used for the two different postural conditions (standing, sustained sitting). Gender was included as a constant correction factor in all regression models. Where gender was a significant variable in the model, analyses were repeated separately for males and females. Results Greater FHP in standing was significantly associated with reduced proportional CTE to CCF strength in females (R2 = 0.21, P = 0.03) and greater proportional CTE to CTF strength in males (R2 = 0.23, P = 0.03). A greater drift into FHP during sustained sitting was associated with a relative reduction in CCE endurance proportional to CTF endurance in females only (R2 = 0.27, P = 0.017). Conclusion(s) This initial study indicates that the balance in performance between the cervical flexor and extensor muscle groups may impact FHP in healthy individuals. However, the findings were inconsistent across different muscle performance ratios and gender. Larger scale studies are therefore now needed to further clarify the relationship between FHP and muscle performance. Implications The findings suggest that relative performance of the various cervical muscle groups needs to be accounted for when considering postural correction strategies in the clinical setting, as is often recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research has identified the trends apparent in service desk design and delivery literature. By doing archival analysis, this investigation has led to the development of a generic framework which has identified three themes in service desk design – User groups, Support models, and Technology types – and two themes in service desk delivery – Direction of delivery, and Executive support level. This research also aims to provide an understanding of service desk functions and the challenges faced by organisations in delivering those functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a key component of the ocular surface required for vision, the cornea has been extensively studied as a site for cell and tissue-based therapies. Historically, these treatments have consisted of donor corneal tissue transplants, but cultivated epithelial autografts have become established over the last 15 years as a routine treatment for ocular surface disease. Ultimately, these treatments are performed with the intention of restoring corneal transparency and a smooth ocular surface. The degree of success, however, is often dependent upon the inherent level of corneal inflammation at time of treatment. In this regard, the anti-inflammatory and immuno-modulatory properties of mesenchymal stromal cells (MSC) have drawn attention to these cells as potential therapeutic agents for corneal repair. The origins for MSC-based therapies are founded in part on observations of the recruitment of endogenous bone marrow-derived cells to injured corneas, however, an increasing quantity of data is emerging for MSC administered following their isolation and ex vivo expansion from a variety of tissues including bone marrow, adipose tissue, umbilical cord and dental pulp. In brief, evidence has emerged of cultured MSC, or their secreted products, having a positive impact on corneal wound healing and retention of corneal allografts in animal models. Optimal dosage, route of administration and timing of treatment, however, all remain active areas of investigation. Intriguingly, amidst these studies, have emerged reports of MSC transdifferentiation into corneal cells. Clearest evidence has been obtained with respect to expression of markers associated with the phenotype of corneal stromal cells. In contrast, the evidence for MSC conversion to corneal epithelial cell types remains inconclusive. In any case, the conversion of MSC into corneal cells seems unlikely to be an essential requirement for their clinical use. This field of research has recently become more complicated by reports of MSC-like properties for cultures established from the peripheral corneal stroma (limbal stroma). The relationship and relative value of corneal-MSC compared to traditional sources of MSC such as bone marrow are at present unclear. This chapter is divided into four main parts. After providing a concise overview of corneal structure and function, we will highlight the types of corneal diseases that are likely to benefit from the anti-inflammatory and immuno-modulatory properties of MSC. We will subsequently summarize the evidence supporting the case for MSC-based therapies in the treatment of corneal diseases. In the third section we will review the literature concerning the keratogenic potential of MSC. Finally, we will review the more recent literature indicating the presence of MSC-like cells derived from corneal tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The New Zealand White rabbit has been widely used as a model of limbal stem cell deficiency (LSCD). Current techniques for experimental induction of LSCD utilize caustic chemicals, or organic solvents applied in conjunction with a surgical limbectomy. While generally successful in depleting epithelial progenitors, the depth and severity of injury is difficult to control using chemical-based methods. Moreover, the anterior chamber can be easily perforated while surgically excising the corneal limbus. In the interest of creating a safer and more defined LSCD model, we have therefore evaluated a mechanical debridement technique based upon use of the AlgerBrush II rotating burr. An initial comparison of debridement techniques was conducted in situ using 24 eyes in freshly acquired New Zealand White rabbit cadavers. Techniques for comparison (4 eyes each) included: (1) non-wounded control, (2) surgical limbectomy followed by treatment with 100% (v/v) n-heptanol to remove the corneal epithelium (1-2 minutes), (3) treatment of both limbus and cornea with n-heptanol alone, (4) treatment of both limbus and cornea with 20% (v/v) ethanol (2-3 minutes), (5) a 2.5-mm rounded burr applied to both the limbus and cornea, and (6) a 1-mm pointed burr applied to the limbus, followed by the 2.5-mm rounded burr applied to the cornea. All corneas were excised and processed for histology immediately following debridement. A panel of four assessors subsequently scored the degree of epithelial debridement within the cornea and limbus using masked slides. The 2.5-mm burr most consistently removed the corneal and limbal epithelia. Islands of limbal epithelial cells were occasionally retained following surgical limbectomy/heptanol treatment, or use of the 1-mm burr. Limbal epithelial cells were consistently retained following treatment with either ethanol or n-heptanol alone, with ethanol being the least effective treatment overall. The 2.5-mm burr method was subsequently evaluated in the right eye of 3 live rabbits by weekly clinical assessments (photography and slit lamp examination) for up to 5 weeks, followed by histological analyses (hematoxylin & eosin stain, periodic acid-Schiff stain and immunohistochemistry for keratin 3 and 13). All 3 eyes that had been completely debrided using the 2.5-mm burr displayed symptoms of ocular surface failure as defined by retention of a prominent epithelial defect (~40% of corneal surface at 5 weeks), corneal neovascularization (2 to 3 quadrants), reduced corneal transparency and conjunctivalization of the corneal surface (demonstrated by the presence of goblet cells and/or staining for keratin 13). In conclusion, our findings indicate that the AlgerBrush II rotating burr is an effective method for the establishment of ocular surface failure in New Zealand White rabbits. In particular, we recommend use of the 2.5-mm rotating burr for improved efficiency of epithelial debridement and safety compared to surgical limbectomy.