115 resultados para buffer storage
Resumo:
Battery-supercapacitor hybrid energy storage systems can achieve better power and energy performances compared to their individual use. These hybrid systems require separate dc-dc converters, or at least one dc-dc converter for the supercapacitor bank, to connect them to the dc-link of the grid connecting inverter. However, the use of such dc-dc converters introduces additional cost and power losses. Therefore, the possibility of direct connection of energy storage systems, to the dc-link of a diode clamped 3-level inverter is investigated in this paper. Even though the proposed topology does not use dc-dc converters, a vector selection method is proposed to produce a similar control flexibility that is found in the separate dc-dc converter topology. The major issue with the proposed system is the imminent imbalance of the neutral point potential. A PWM technique with modified carriers is used to solve this problem. Simulations are carried out using MATLAB/SIMULINK to verify the efficacy of the proposed system.
Resumo:
This paper explores the possibility of using grid side inverter as an interface to connect energy storage systems. A dual inverter system, formed by cascading two 2-level inverters through a coupling transformer, is used as the testing model. The inverters are named as “main inverter” and “auxiliary inverter”. The main inverter is powered by the rectified output of the wind generator while the auxiliary inverter is attached to a Battery Energy Storage System (BESS). If there is a surplus of wind power compared to the demand, then that would be stored in BESS while if there is a deficit in wind power then the demand will be satisfied by supplying power from the BESS. This enables constant power dispatch to the grid irrespective of wind changes. Novel modulation and control techniques are proposed to address the problem of non-integer, dynamically-varying dc-link voltage ratio, which is due to random wind changes. Furthermore, a maximum power tracking controller for this unique system is explained in detail. Simulation results verify the efficacy of proposed modulation and control techniques in suppressing random power fluctuations.
Resumo:
Battery energy storage system (BESS) is to be incorporated in a wind farm to achieve constant power dispatch. The design of the BESS is based on the forecasted wind speed, and the technique assumes the distribution of the error between the forecasted and actual wind speeds is Gaussian. It is then shown that although the error between the predicted and actual wind powers can be evaluated, it is non-Gaussian. With the known distribution in the error of the predicted wind power, the capacity of the BESS can be determined in terms of the confident level in meeting specified constant power dispatch commitment. Furthermore, a short-term power dispatch strategy is also developed which takes into account the state of charge (SOC) of the BESS. The proposed approach is useful in the planning of the wind farm-BESS scheme and in the operational planning of the wind power generating station.
Resumo:
Since 2000, the Government of Viet Nam has committed to provide rural communities with increased access to safe water through a variety of household water supply schemes (wells, ferrocement tanks and jars) and piped water schemes. One possible, unintended consequence of these schemes is the concomitant increase in water containers that may serve as habitats for dengue mosquito immatures, principally Aedes aegypti. To assess these possible impacts we undertook detailed household surveys of Ae. aegypti immatures, water storage containers and various socioeconomic factors in three rural communes in southern Viet Nam. Positive relationships between the numbers of household water storage containers and the prevalence and abundance of Ae. aegypti immatures were found. Overall, water storage containers accounted for 92–97% and 93–96% of the standing crops of III/IV instars and pupae, respectively. Interestingly, households with higher socioeconomic levels had significantly higher numbers of water storage containers and therefore greater risk of Ae. aegypti infestation. Even after provision of piped water to houses, householders continued to store water in containers and there was no observed decrease in water storage container abundance in these houses, compared to those that relied entirely on stored water. These findings highlight the householders’ concerns about the limited availability of water and their strong behavoural patterns associated with storage of water. We conclude that household water storage container availability is a major risk factor for infestation with Ae. aegypti immatures, and that recent investment in rural water supply infrastructure are unlikely to mitigate this risk, at least in the short term.
Resumo:
This paper explores a new breed of energy storage system interfacing for grid connected photovoltaic (PV) systems. The proposed system uses the popular dual inverter topology in which one inverter is supplied by a PV cell array and the other by a Battery Energy Storage System (BESS). The resulting conversion structure is controlled in a way that both demand matching and maximum power point tracking of the PV cell array are performed simultaneously. This dual inverter topology can produces 2, 3, 4 and 5 level inverter voltage waveforms at the dc-link voltage ratios of 0:1, 1:1, 2:1 and 3:2 respectively. Since the output voltage of the PV cell array and the battery are uncorrelated and dynamically change, the resulting dc-link voltage ratio can take non-integer values as well. These noninteger dc-link voltage ratios produce unevenly distributed space vectors. Therefore, the main issue with the proposed system is the generation of undistorted current even in the presence of unevenly distributed and dynamically changing space vectors. A modified space vector modulation method is proposed in this paper to address this issue and its efficacy is proved by simulation results. The ability of the proposed system to act as an active power source is also verified.
Resumo:
An overview is given of the various energy storage technologies which can be used in distributed generation (DG) schemes. Description of the recent photovoltaic DG initiative in Singapore is included, in which several of the storage systems can find ready applications. Schemes pertaining to the use of solid oxide fuel cell for power quality enhancement and battery energy storage system used in conjunction with wind power generation are also described.
Resumo:
Large number of rooftop Photovoltaics (PVs) have turned traditional passive networks into active networks with intermittent and bidirectional power flow. A community based distribution network grid reinforcement process is proposed to address technical challenges associated with large integration of rooftop PVs. Probabilistic estimation of intermittent PV generation is considered. Depending on the network parameters such as the R/X ratio of distribution feeder, either reactive control from PVs or coordinated control of PVs and Battery Energy Storage (BES) has been proposed. Determination of BES capacity is one of the significant outcomes from the proposed method and several factors such as variation in PV installed capacity as well as participation from community members are analyzed. The proposed approach is convenient for the community members providing them flexibility of managing their integrated PV and BES systems
Resumo:
Integrating Photovoltaic (PV) systems with battery energy storage in the distribution network will be essential to allow for continued uptake of domestic PV system installations. With increasing concerns regarding environmental and climate change issues, incorporating sources of renewable energy into power networks across the world will be key for a sustainable future. Australia is well placed to utilise solar energy as a significant component of its future energy generation and within the last 5 years there has been a rapid growth in the penetration levels seen by the grid. This growth of PV systems is causing a number of issues including intermittency of supply, negative power flow and voltage rises. Using the simulator tool GridLAB-D with a model of a typical South-East Queensland (SEQ) 11 kV distribution feeder, the effect of various configurations of PV systems have been offset with Battery Energy Storage Systems (BESS). From this, combinations of PV and storage that are most effective at mitigating the issues were explored.
Resumo:
This paper presents an efficient algorithm for optimizing the operation of battery storage in a low voltage distribution network with a high penetration of PV generation. A predictive control solution is presented that uses wavelet neural networks to predict the load and PV generation at hourly intervals for twelve hours into the future. The load and generation forecast, and the previous twelve hours of load and generation history, is used to assemble load profile. A diurnal charging profile can be compactly represented by a vector of Fourier coefficients allowing a direct search optimization algorithm to be applied. The optimal profile is updated hourly allowing the state of charge profile to respond to changing forecasts in load.
Resumo:
Battery energy storage systems (BESS) are becoming feasible to provide system frequency support due to recent developments in technologies and plummeting cost. Adequate response of these devices becomes critical as the penetration of the renewable energy sources increases in the power system. This paper proposes effective use of BESS to improve system frequency performance. The optimal capacity and the operation scheme of BESS for frequency regulation are obtained using two staged optimization process. Furthermore, the effectiveness of BESS for improving the system frequency response is verified using dynamic simulations.