62 resultados para clones


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There have been recent improvements in the clinical understanding and definition of the major types of autoimmune liver disease. However, still lacking is knowledge of their prevalence and pathogenesis. Three areas of study are in progress in our laboratory. First, in type 1 autoimmune hepatitis, the search continues to identify a liver/disease-specific autoantigenic reactant. Using hepatocyte membrane preparations, immunoblotting has underlined the problem of distinguishing, among multiple reactants, those that may be causally rather than consequentially related to hepatocellular damage. Second, in primary biliary cirrhosis (PBC), the need for population screening to ascertain prevalence and detect preclinical cases can be met by a rapid automated procedure for detection, by specific enzyme inhibition in microtitre wells, of antibody (anti-M2) to the pyruvate dehydrogenase complex E2 subunit (PDC-E2). Third, the structure of the conformational epitope within the inner lipoyl domain of PDC-E2 is being investigated by screening random phage-displayed peptide libraries using PBC sera. This has yielded phage clones in which the sequence of the peptide insert portrays the structure of this epitope, as judged by clustering of PBC-derived sequences to particular branches of a guide-tree that shows relatedness of peptides, and by reactivity of selected phage clones with anti-PDC-E2. Thus phage display identifies a peptide 'mimotope' of the antibody epitope in the inner lipoyl domain of PDC-E2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uropathogenic Escherichia coli is the primary cause of urinary tract infections, which affects over 60% of women during their lifetime. UPEC exhibits a number of virulence traits that facilitate colonization of the bladder, including inhibition of cytokine production by bladder epithelial cells. The goal of this study was to identify the mechanism of this inhibition. We observed that cytokine suppression was associated with rapid cytotoxicity toward epithelial cells. We found that cytotoxicity, cytokine suppression and alpha-hemolysin production were all tightly linked in clinical isolates. We screened a UPEC fosmid library and identified clones that gained the cytotoxicity and cytokine-suppression phenotypes. Both clones contained fosmids encoding a PAI II(J96)-like domain and expressed the alpha-hemolysin (hlyA) encoded therein. Mutation of the fosmid-encoded hly operon abolished cytotoxicity and cytokine suppression. Similarly, mutation of the chromosomal hlyCABD operon of UPEC isolate F11 also abolished these phenotypes, and they could be restored by introducing the PAI II(J96)-like domain-encoding fosmid. We also examined the role of alpha-hemolysin in cytokine production both in the murine UTI model as well as patient specimens. We conclude that E. coli utilizes alpha-hemolysin to inhibit epithelial cytokine production in vitro. Its contribution to inflammation during infection requires further study.