32 resultados para Salmonella enterica


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Xanthine oxidase (XO) is distributed in mammals largely in the liver and small intestine, but also is highly active in milk where it generates hydrogen peroxide (H2O2). Adult human saliva is low in hypoxanthine and xanthine, the substrates of XO, and high in the lactoperoxidase substrate thiocyanate, but saliva of neonates has not been examined. Results Median concentrations of hypoxanthine and xanthine in neonatal saliva (27 and 19 μM respectively) were ten-fold higher than in adult saliva (2.1 and 1.7 μM). Fresh breastmilk contained 27.3±12.2 μM H2O2 but mixing baby saliva with breastmilk additionally generated >40 μM H2O2, sufficient to inhibit growth of the opportunistic pathogens Staphylococcus aureus and Salmonella spp. Oral peroxidase activity in neonatal saliva was variable but low (median 7 U/L, range 2–449) compared to adults (620 U/L, 48–1348), while peroxidase substrate thiocyanate in neonatal saliva was surprisingly high. Baby but not adult saliva also contained nucleosides and nucleobases that encouraged growth of the commensal bacteria Lactobacillus, but inhibited opportunistic pathogens; these nucleosides/bases may also promote growth of immature gut cells. Transition from neonatal to adult saliva pattern occurred during the weaning period. A survey of saliva from domesticated mammals revealed wide variation in nucleoside/base patterns. Discussion and Conclusion During breast-feeding, baby saliva reacts with breastmilk to produce reactive oxygen species, while simultaneously providing growth-promoting nucleotide precursors. Milk thus plays more than a simply nutritional role in mammals, interacting with infant saliva to produce a potent combination of stimulatory and inhibitory metabolites that regulate early oral–and hence gut–microbiota. Consequently, milk-saliva mixing appears to represent unique biochemical synergism which boosts early innate immunity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ethanolic whole plant extracts obtained from Cuscuta reflexa Roxb were screened against Gram positive (Bacillus subtilis and Staphylococcus aureus) and Gram negative (Escherichia coli and Salmonella typhi) bacteria to evaluate their antimicrobial activity. Of the four concentrations of plant extract tested (200 µg/mL, 300 µg/mL, 400 µg/mL or 500 µg/mL), 500 µg/mL elicited the greatest zones of bacterial inhibition across three of the bacteria. In contrast, the growth of Salmonella typhi was not halted regardless of extract concentration. At 200 µg/mL, only the growth of E. coli was inhibited. Overall, although the greatest antimicrobial activity was demonstrated to be against E. coli at a concentration of 500 µg/mL (24.6±0.24), upon comparison to the other bacteria, both B. cereus and S. aureus educed similar zones of inhibition upon comparison to their positive antibiotic control.