66 resultados para Porphyrins, Molecular Orbitals, Density Functional, Mixed-Valence, Spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, halogen···halogen interactions have been demonstrated to stabilize two-dimensional supramolecular assemblies at the liquid–solid interface. Here we study the effect of changing the halogen, and report on the 2D supramolecular structures obtained by the adsorption of 2,4,6-tris(4-bromophenyl)-1,3,5-triazine (TBPT) and 2,4,6-tris(4-iodophenyl)-1,3,5-triazine (TIPT) on both highly oriented pyrolytic graphite and the (111) facet of a gold single crystal. These molecular systems were investigated by combining room-temperature scanning tunneling microscopy in ambient conditions with density functional theory, and are compared to results reported in the literature for the similar molecules 1,3,5-tri(4-bromophenyl)benzene (TBPB) and 1,3,5-tri(4-iodophenyl)benzene (TIPB). We find that the substrate exerts a much stronger effect than the nature of the halogen atoms in the molecular building blocks. Our results indicate that the triazine core, which renders TBPT and TIPT stiff and planar, leads to stronger adsorption energies and hence structures that are different from those found for TBPB and TIPB. On the reconstructed Au(111) surface we find that the TBPT network is sensitive to the fcc- and hcp-stacked regions, indicating a significant substrate effect. This makes TBPT the first molecule reported to form a continuous monolayer at room temperature in which molecular packing is altered on the differently reconstructed regions of the Au(111) surface. Solvent-dependent polymorphs with solvent coadsorption were observed for TBPT on HOPG. This is the first example of a multicomponent self-assembled molecular networks involving the rare cyclic, hydrogen-bonded hexamer of carboxylic groups, R66(24) synthon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eight new N-arylstilbazolium chromophores with electron donating –NR2 (R = Me or Ph) substituents have been synthesized via Knoevenagel condensations and isolated as their PF6− salts. These compounds have been characterized by using various techniques including 1H NMR and IR spectroscopies and electrospray mass spectrometry. UV–vis absorption spectra recorded in acetonitrile are dominated by intense, low energy π → π* intramolecular charge-transfer (ICT) bands, and replacing Me with Ph increases the ICT energies. Cyclic voltammetric studies show irreversible reduction processes, together with oxidation waves that are irreversible for R = Me, but reversible for R = Ph. Single crystal X-ray structures have been determined for three of the methyl ester-substituted stilbazolium salts and for the Cl− salts of their picolinium precursors. Time-dependent density functional theory calculations afford reasonable predictions of ICT energies, but greater rigour is necessary for –NPh2 derivatives. The four new acid-functionalized dyes give moderate sensitization efficiencies (ca. 0.2%) when using TiO2-based photoanodes, with relatively higher values for R = Ph vs Me, while larger efficiencies (up to 0.8%) are achieved with ZnO substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation of a series of nickel dichloride complexes with bulky diphosphinomethane chelate ligands R2PCH2PR′2 is reported. Reaction with the appropriate Grignard reagent leads to the corresponding dimethyl and dibenzyl complexes. Cationic monomethyl and mono-η3-benzyl complexes are generated from these dialkyl complexes by protonation with [H(OEt2)2]+[B(3,5-(CF3)2C6H3)4]−, while the complex [(dtbpm κ2P)Ni(η3-CH(CH2Ph)Ph]+[B(3,5-(CF3)2C6H3)4]−is obtained from protonation of the Ni(0) olefin complex (dtbpm-κ2P)N(η2-trans-stilbene). Crystal structures of examples of dichlorides, dimethyl, dibenzyl, cationic methyl, and cationic η3-benzyl complexes are reported. Solutions of the cations polymerize ethylene under mild conditions and without the necessity of an activating agent, to form polyethylene having high molecular weights and low degrees of chain branching. In comparison to the Ni methyl cations, the η3-benzyl cation complexes are more stable and somewhat less active but still very efficient in C2H4 polymerization. The effect on the resulting polyethylene of varying the substituents R, R′ on the phosphine ligand has been examined, and a clear trend for longer chain PE with less branching in the presence of more bulky substituents on the diphosphine has been found. Density functional calculations have been used to examine the rapid suprafacial η3 to η3 haptotropic shift processes of the[(R2PCH2PR′2)Ni] fragment and the η3−η1 change of the coordination mode of the benzyl group required for polymerization in those cations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular structure of the mixed anion mineral Clinotyrolite Ca2Cu9[(As,S)O4]4(OH)10•10(H2O) has been determined by the combination of Raman and infrared spectroscopy. Characteristic bands associated with arsenate, sulphate and hydroxyl units are identified. Broad bands in the OH stretching region are observed and are resolved into component bands. Estimates of hydrogen bond distances were made using a Libowitzky function and both short and long hydrogen bonds are identified. Two intense Raman bands at 842 and ~796 cm-1 are assigned to the ν1 (AsO4)3- symmetric stretching and ν3 (AsO4)3- antisymmetric stretching modes. The comparatively sharp Raman band at 980 cm-1 is assigned to the ν1 (SO4)2- symmetric stretching mode and a broad Raman spectral profile centred upon 1100 cm-1 is attributed to the ν3 (SO4)2- antisymmetric stretching mode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon substrates coated with a bromide-terminated silane are transformed into highly reactive, cyclopentadiene covered analogues. These surfaces undergo rapid cycloaddition reactions with various dienophile-capped polymers. Mild heating of the substrates causes the retro-Diels-Alder reaction to occur, thus reforming the reactive cyclopentadiene surface, generating an efficiently switchable surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnO nanoparticles with highly controllable particle sizes(less than 10 nm) were synthesized using organic capping ligands in Zn(Ac)2 ethanolic solution. The molecular structure of the ligands was found to have significant influence on the particle size. The multi-functional molecule tris(hydroxymethyl)-aminomethane (THMA) favoured smaller particle distributions compared with ligands possessing long hydrocarbon chains that are more frequently employed. The adsorption of capping ligands on ZnnOn crystal nuclei (where n = 4 or 18 molecular clusters of(0001) ZnO surfaces) was modelled by ab initio methods at the density functional theory (DFT) level. For the molecules examined, chemisorption proceeded via the formation of Zn...O, Zn...N, or Zn...S chemical bonds between the ligands and active Zn2+ sites on ZnO surfaces. The DFT results indicated that THMA binds more strongly to the ZnO surface than other ligands, suggesting that this molecule is very effective at stabilizing ZnO nanoparticle surfaces. This study, therefore, provides new insight into the correlation between the molecular structure of capping ligands and the morphology of metal oxide nanostructures formed in their presence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vapour phase assembly has been used for the first time to prepare co-crystals in which the primary intermolecular interaction is halogen bonding. Co-crystals of the nitroxide 1,1,3,3-tetramethylisoindolin-2-yloxyl (TMIO) and 1,2-diiodotetrafluorobenzene (1,2-DITFB) are readily formed under standard sublimation conditions. Single crystal X-ray diffraction confirmed the structure of a 2:2 cyclic tetramer, (TMIO)2·(1,2-DITFB)2, which exhibits a new halogen bonding motif, with each nitroxide oxygen atom accepting two halogen bonds. Powder X-ray diffraction confirmed the homogeneity of the bulk sample. The crystalline complex was further characterized in the solid state using thermal analysis and vibrational spectroscopy (infrared and Raman). Density functional theory calculations were also used to evaluate the enthalpy of formation, electrostatic potential and unpaired electron density of the complex. These findings illustrate the preparation of co-crystals where solution state methodology is problematic and the potential of this approach for the formation of novel organic spin systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fourteen new complexes of the form cis-\[RuIIX2(R2qpy2+)2]4+ (R2qpy2+ = a 4,4′:2′,2″:4″,4‴-quaterpyridinium ligand, X = Cl− or NCS−) have been prepared and isolated as their PF6− salts. Characterisation involved various techniques including 1H NMR spectroscopy and +electrospray or MALDI mass spectrometry. The UV–Vis spectra display intense intraligand π → π∗ absorptions, and also metal-to-ligand charge-transfer (MLCT) bands with two resolved maxima in the visible region. Red-shifts in the MLCT bands occur as the electron-withdrawing strength of the pyridinium groups increases, while replacing Cl− with NCS− causes blue-shifts. Cyclic voltammograms show quasi-reversible or reversible RuIII/II oxidation waves, and several ligand-based reductions that are irreversible. The variations in the redox potentials correlate with changes in the MLCT energies. A single-crystal X-ray structure has been obtained for a protonated form of a proligand salt, \[(4-(CO2H)Ph)2qpyH3+]\[HSO4]3·3H2O. Time-dependent density functional theory calculations give adequate correlations with the experimental UV–Vis spectra for the two carboxylic acid-functionalised complexes in DMSO. Despite their attractive electronic absorption spectra, these dyes are relatively inefficient photosensitisers on electrodes coated with TiO2 or ZnO. These observations are attributed primarily to weak electronic coupling with the surfaces, since the DFT-derived LUMOs include no electron density near the carboxylic acid anchors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ab initio spin-polarized density functional theory calculations are performed to explore the effect of single Na vacancy on NaAlH4(001) surface on the initial dehydrogenation kinetics. The authors found that two Al–H bond lengths become elongated and weakened due to the presence of a Na vacancy on the NaAlH4(001) surface. Spontaneous recombination from the surface to form molecular hydrogen is observed in the spin-polarized ab initio molecular dynamics simulation. The authors’ results indicate that surface Na vacancies play a critical role in accelerating the dehydrogenation kinetics in sodium alanate. The understanding gained here will aid in the rational design and development of complex hydride materials for hydrogen storage

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, ab initio density functional theory (DFT) calculations are performed to study the structural and electronic properties of diazonium reagent functionalized (4, 4) single-walled carbon nanotube (SWCNT). We find the aryl group covalently bonds with SWCNT and prefers to be perpendicular to the side wall of nanotube. It has a rotational barrier of 0.35 eV around the formed aryl-tube bond axis and should be thermodynamically stable at room temperature. Additionally, new peaks appeared around the Fermi energy in the density of state (DOS) due to the weak band dispersion. Increasing of the coverage of the functional group will result in significant upshift of the Fermi level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ab initio density functional theory (DFT) calculations are performed to study the adsorption of H2 molecules on a Ti-doped Mg(0001) surface. We find that two hydrogen molecules are able to dissociate on top of the Ti atom with very small activation barriers (0.103 and 0.145 eV for the first and second H2 molecules, respectively). Additionally, a molecular adsorption state of H2 above the Ti atom is observed for the first time and is attributed to the polarization of the H2 molecule by the Ti cation. Our results parallel recent findings for H2 adsorption on Ti-doped carbon nanotubes or fullerenes. They provide new insight into the preliminary stages of hydrogen adsorption onto Ti-incorporated Mg surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesium and its alloys have shown a great potential in effective hydrogen storage due to their advantages of high volumetric/gravimetric hydrogen storage capacity and low cost. However, the use of these materials in fuel cells for automotive applications at the present time is limited by high hydrogenation temperature and sluggish sorption kinetics. This paper presents the recent results of design and development of magnesium-based nanocomposites demonstrating the catalytic effects of carbon nanotubes and transition metals on hydrogen adsorption in these materials. The results are promising for the application of magnesium materials for hydrogen storage, with significantly reduced absorption temperatures and enhanced ab/desorption kinetics. High level Density Functional Theory calculations support the analysis of the hydrogenation mechanisms by revealing the detailed atomic and molecular interactions that underpin the catalytic roles of incorporated carbon and titanium, providing clear guidance for further design and development of such materials with better hydrogen storage properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ab initio Density Functional Theory (DFT) calculations are performed to study the diffusion of atomic hydrogen on a Mg(0001) surface and their migration into the subsurface layers. A carbon atom located initially on a Mg(0001) surface can migrate into the sub-surface layer and occupy a fcc site, with charge transfer to the C atom from neighboring Mg atoms. The cluster of postively charged Mg atoms surrounding a sub-surface C is then shown to facilitate the dissociative chemisorption of molecular hydrogen on the Mg(0001) surface, and the surface migration and subsequent diffusion into the subsurface of atomic hydrogen. This helps rationalize the experimentally-observed improvement in absorption kinetics of H2 when graphite or single walled carbon nanotubes (SWCNT) are introduced into the Mg powder during ball milling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the dissociative chemisorption of hydrogen on both pure and Ti-incorporated Mg(0001) surfaces are studied by ab initio density functional theory (DFT) calculations. The calculated dissociation barrier of hydrogen molecule on a pure Mg(0001) surface (1.05 eV) is in good agreement with comparable theoretical studies. For the Ti-incorporated Mg(0001) surface, the activated barrier decreases to 0.103 eV due to the strong interaction between the molecular orbital of hydrogen and the d metal state of Ti. This could explain the experimentally observed improvement in absorption kinetics of hydrogen when transition metals have been introduced into the magnesium materials.