42 resultados para Porcine circovirus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dermal wound healing is a biochemical and cellular process critical to life. While the majority of the population will only ever experience successful wound healing outcomes, some 1-3 % of those aged over 65 years will experience wound healing delay or perpetuation. These hard-to-heal wounds are comprised of degraded and dysfunctional extracellular matrix, yet the integrity of this structure is critical in the processes of normal wound healing. As such, extracellular matrix replacements have been devised that can replace dysfunctional extracellular matrix in hard-to-heal wounds with the aim of restoring normal wound healing processes. Here we evaluated a novel synthetic matrix protein for its ability to act as an acellular scaffold that can replace dysfunctional extracellular matrix. In this regard the synthetic protein demonstrated an ability to rapidly adsorb to the dermal surface, permit cell attachment and facilitate the cellular functions essential to wound healing. When applied to deep partial thickness wounds in a porcine animal model the matrix protein also demonstrated the ability to reduce wound duration. These data provide evidence that the synthetic matrix protein has the ability to function as an acellular scaffold for wound healing purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution, high-contrast, three-dimensional images of live cell and tissue architecture can be obtained using second harmonic generation (SHG), which comprises non-absorptive frequency changes in an excitation laser line. SHG does not require any exogenous antibody or fluorophore labeling, and can generate images from unstained sections of several key endogenous biomolecules, in a wide variety of species and from different types of processed tissue. Here, we examined normal control human skin sections and human burn scar tissues using SHG on a multi-photon microscope (MPM). Examination and comparison of normal human skin and burn scar tissue demonstrated a clear arrangement of fibers in the dermis, similar to dermal collagen fiber signals. Fluorescence-staining confirmed the MPM-SHG collagen colocalization with antibody staining for dermal collagen type-I but not fibronectin or elastin. Furthermore, we were able to detect collagen MPM-SHG signal in human frozen sections as well as in unstained paraffin embedded tissue sections that were then compared with hematoxylin and eosin staining in the identical sections. This same approach was also successful in localizing collagen in porcine and ovine skin samples, and may be particularly important when species-specific antibodies may not be available. Collectively, our results demonstrate that MPM SHG-detection is a useful tool for high resolution examination of collagen architecture in both normal and wounded human, porcine and ovine dermal tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many alternative therapies are used as first aid treatment for burns, despite limited evidence supporting their use. In this study, Aloe vera, saliva and a tea tree oil impregnated dressing (Burnaid) were applied as first aid to a porcine deep dermal contact burn, compared to a control of nothing. After burn creation, the treatments were applied for 20 min and the wounds observed at weekly dressing changes for 6 weeks. Results showed that the alternative treatments did significantly decrease subdermal temperature within the skin during the treatment period. However, they did not decrease the microflora or improve re-epithelialisation, scar strength, scar depth or cosmetic appearance of the scar and cannot be recommended for the first aid treatment of partial thickness burns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using our porcine model of deep dermal partial thickness burn injury, various cooling techniques (15 degrees C running water, 2 degrees C running water, ice) of first aid were applied for 20 minutes compared with a control (ambient temperature). The subdermal temperatures were monitored during the treatment and wounds observed and photographed weekly for 6 weeks, observing reepithelialization, wound surface area and cosmetic appearance. Tissue histology and scar tensile strength were examined 6 weeks after burn. The 2 degrees C and ice treatments decreased the subdermal temperature the fastest and lowest, however, generally the 15 and 2 degrees C treated wounds had better outcomes in terms of reepithelialization, scar histology, and scar appearance. These findings provide evidence to support the current first aid guidelines of cold tap water (approximately 15 degrees C) for 20 minutes as being beneficial in helping to heal the burn wound. Colder water at 2 degrees C is also beneficial. Ice should not be used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using our porcine model of deep dermal partial thickness burn injury, various durations (10min, 20min, 30min or 1h) and delays (immediate, 10min, 1h, 3h) of 15 degrees C running water first aid were applied to burns and compared to untreated controls. The subdermal temperatures were monitored during the treatment and wounds observed weekly for 6 weeks, for re-epithelialisation, wound surface area and cosmetic appearance. At 6 weeks after the burn, tissue biopsies were taken of the scar for histological analysis. Results showed that immediate application of cold running water for 20min duration is associated with an improvement in re-epithelialisation over the first 2 weeks post-burn and decreased scar tissue at 6 weeks. First aid application of cold water for as little as 10min duration or up to 1h delay still provides benefit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Silver dressings have been widely and successfully used to prevent cutaneous wounds, including burns, chronic ulcers, dermatitis and other cutaneous conditions, from infection. However, in a few cases, skin discolouration or argyria-like appearances have been reported. This study investigated the level of silver in scar tissue post-burn injury following application of Acticoat, a silver dressing. METHODS A porcine deep dermal partial thickness burn model was used. Burn wounds were treated with this silver dressing until completion of re-epithelialization, and silver levels were measured in a total of 160 scars and normal tissues. RESULTS The mean level of silver in scar tissue covered with silver dressings was 136 microg/g, while the silver level in normal skin was less than 0.747 microg/g. A number of wounds had a slate-grey appearance, and dissection of the scars revealed brown-black pigment mostly in the middle and deep dermis within the scar. The level of silver and the severity of the slate-grey discolouration were correlated with the length of time of the silver dressing application. CONCLUSIONS These results show that silver deposition in cutaneous scar tissue is a common phenomenon, and higher levels of silver deposits and severe skin discolouration are correlated with an increase in the duration of this silver dressing application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of dual growing rods is a fusionless surgical approach to the treatment of early onset scoliosis (EOS) which aims to harness potential growth in order to correct spinal deformity. This study compared through in-vitro experiments the biomechanical response of two different rod designs under axial rotation loading. The study showed that a new design of telescoping growing rod preserved the rotational flexibility of the spine in comparison with rigid rods indicating them to be a more physiological way to improve the spinal deformity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION Managing spinal deformities in young children is challenging, particularly early onset scoliosis (EOS). Surgical intervention is often required if EOS has been unresponsive to conservative treatment particularly with rapidly progressive curves. An emerging treatment option for EOS is fusionless scoliosis surgery. Similar to bracing, this surgical option potentially harnesses growth, motion and function of the spine along with correcting spinal deformity. Dual growing rods are one such fusionless treatment, which aims to modulate growth of the vertebrae. The aim of this study was to ascertain the extent to which semiconstrained growing rods (Medtronic, Sofamor, Danek, Memphis, TN) with a telescopic sleeve component, reduce rotational constraint on the spine compared with standard "constrained / rigid" rods and hence potentially provide a more physiological mechanical environment for the growing spine. METHODS Six 40-60kg English Large White porcine spines served as a model for the paediatric human spine. Each spine was dissected into a 7 level thoracolumbar multi-segment unit (MSU), removing all non-ligamentous soft tissues and leaving 3cm of ribs either side. Pure nondestructive axial rotation moments of ±4Nm at a constant rotation rate of 8deg.s-1 were applied to the mounted MSU spines using a biaxial Instron testing machine. Displacement of each vertebral level was captured using a 3D motion tracking system (Optotrak 3020, Northern Digital Inc, Waterloo, ON). Each spine was tested in an un-instrumented state first and then with appropriately sized semi-constrained growing rods and rigid rods in alternating sequence. The rods were secured by multi-axial pedicle screws (Medtronic CD Horizon) at levels 2 and 6 of the construct. The range of motion (ROM), neutral zone (NZ) size and stiffness (Nm.deg-1) were calculated from the Instron load-displacement data and intervertebral ROM was calculated through a MATLAB algorithm from Optotrak data. RESULTS Irrespective of the order of testing, rigid rods significantly reduced the total ROM compared with semi-constrained rods (p<0.05) with in a significantly stiffer spine for both left and right axial rotation (p<0.05). Analysing the intervertebral motion within the instrumented levels 2-6, rigid rods showed reduced ROM compared with semi-constrained growing rods and compared with un-instrumented motion segments. CONCLUSION Semi-constrained growing rods maintain similar stiffness in axial rotation to un-instrumented spines, while dual rigid rods significantly reduce axial rotation. Clinically the effect of semi-constrained growing rods as observed in this study is that they would be expected to allow growth via the telescopic rod components while maintaining the axial flexibility of the spine, which may reduce occurrence of the crankshaft phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION Managing spinal deformities in young children is challenging, particularly early-onset scoliosis (EOS). Any progressive spinal deformity particularly in early life presents significant health risks for the child and a challenge for the treating surgeon. Surgical intervention is often required if EOS has been unresponsive to conservative treatment particularly with rapidly progressive curves. An emerging treatment option particularly for EOS is fusionless scoliosis surgery. Similar to bracing this surgical option potentially harnesses growth, motion and function of the spine along with correcting spinal deformity. Dual growing rods is one such fusionless treatment, which aims to modulate growth of the vertebrae. The aim of this study was to ascertain the extent to which semi-constrained growing rods (Medtronic, Memphis, TN) with a telescopic sleeve component, reduce rotational constraint on the spine compared with standard rigid rods and hence potentially provide a more physiological mechanical environment for the growing spine. METHODS Six 40-60kg English Large White porcine spines served as a model for the paediatric human spine. Each spine was dissected into 7 level thoracolumbar multi-segment unit (MSU) spines, removing all non-ligamentous soft tissues. Appropriately sized semi-constrained growing rods and rigid rods were secured by multi-axial screws (Medtronic) prior to testing in alternating sequences for each spine. Pure nondestructive moments of +/4Nm at a constant rotation rate of 8deg/s was applied to the mounted MSU spines. Displacement of each level was captured using an Optotrak (Northern Digital Inc, Waterloo, ON). The range of motion (ROM), neutral zone (NZ) size and stiffness (Nm/deg) were calculated from the Instron load-displacement data and intervertebral ROM was calculated through a MATLAB algorithm from Optotrak data. RESULTS Irrespective of sequence order rigid rods significantly reduced the total ROM (deg) than compared to semi-constrained rods (p<0.05) and resulted in a significantly stiffer (Nm/deg) spine for both left and right axial rotation testing (p<0.05). Analysing the intervertebral motion within the instrumented levels, rigid rods showed reduced ROM (Deg) than compared to semi-constrained growing rods and the un-instrumented (UN-IN) test sequences. CONCLUSION The semi-constrained growing rods maintained rotation similar to UN-IN spines while the rigid rods showed significantly reduced axial rotation across all instrumented levels. Clinically the effect of semi-constrained growing rods evaluated in this study is that they will allow growth via the telescopic rod components while maintaining the axial rotation ability of the spine, which may also reduce the occurrence of the crankshaft phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patients with burn wounds are susceptible to wound infection and sepsis. This research introduces a novel burn wound dressing that contains silver nanoparticles (SNPs) to treat infection in a 2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS-Na(+) ) hydrogel. Silver nitrate was dissolved in AMPS-Na(+) solution and then exposed to gamma irradiation to form SNP-infused hydrogels. The gamma irradiation results in a cross-linked polymeric network of sterile hydrogel dressing and a reduction of silver ions to form SNPs infused in the hydrogel in a one-step process. About 80% of the total silver was released from the hydrogels after 72 h immersion in simulated body fluid solution; therefore, they could be used on wounds for up to 3 days. All the hydrogels were found to be nontoxic to normal human dermal fibroblast cells. The silver-loaded hydrogels had good inhibitory action against Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Results from a pilot study on a porcine burn model showed that the 5-mM silver hydrogel was efficient at preventing bacterial colonization of wounds, and the results were comparable to the commercially available silver dressings (Acticoat(TM) , PolyMem Silver(®) ). These results support its use as a potential burn wound dressing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Managing spinal deformities in young children is challenging, particularly early onset scoliosis (EOS). Surgical intervention is often required if EOS has been unresponsive to conservative treatment particularly with rapidly progressive curves. An emerging treatment option for EOS is fusionless scoliosis surgery. Similar to bracing, this surgical option potentially harnesses growth, motion and function of the spine along with correcting spinal deformity. Dual growing rods are one such fusionless treatment, which aims to modulate growth of the vertebrae. The aim of this study was to ascertain the extent to which semi-constrained growing rods (Medtronic Sofamor Danek Memphis, TN, USA) with a telescopic sleeve component, reduce rotational constraint on the spine compared with standard rigid rods and hence potentially provide a more physiological mechanical environment for the growing spine. This study found that semi-constrained growing rods would be expected to allow growth via the telescopic rod components while maintaining the axial flexibility of the spine and the improved capacity for final correction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The use of dual growing rods is a fusionless surgical approach to the treatment of early onset scoliosis (EOS), which aims of harness potential growth in order to correct spinal deformity. The purpose of this study was to compare the in-vitro biomechanical response of two different dual rod designs under axial rotation loading. Methods Six porcine spines were dissected into seven level thoracolumbar multi-segmental units. Each specimen was mounted and tested in a biaxial Instron machine, undergoing nondestructive left/right axial rotation to peak moments of 4Nm at a constant rotation rate of 8deg.s-1. A motion tracking system (Optotrak) measured 3D displacements of individual vertebrae. Each spine was tested in an un-instrumented state first and then with appropriately sized semi-constrained growing rods and ‘rigid’ rods in alternating sequence. Range of motion, neutral zone size and stiffness were calculated from the moment-rotation curves and intervertebral ranges of motion were calculated from Optotrak data. Findings Irrespective of test sequence, rigid rods showed significantly reduction of total rotation across all instrumented levels (with increased stiffness) whilst semi-constrained rods exhibited similar rotation behavior to the un-instrumented (P<0.05). An 11% and 8% increase in stiffness for left and right axial rotation respectively and 15% reduction in total range of motion was recorded with dual rigid rods compared with semi-constrained rods. Interpretation Based on these findings, the semi-constrained growing rods do not increase axial rotation stiffness compared with un-instrumented spines. This is thought to provide a more physiological environment for the growing spine compared to dual rigid rod constructs.