55 resultados para Biological Phenomena, Cell Phenomena, and Immunity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Members of the matrix metalloproteinase (MMP) family of proteases are required for the degradation of the basement membrane and extracellular matrix in both normal and pathological conditions. In vitro, MT1-MMP (MMP-14, membrane type-1-MMP) expression is higher in more invasive human breast cancer (HBC) cell lines, whilst in vivo its expression has been associated with the stroma surrounding breast tumours. MMP-1 (interstitial collagenase) has been associated with MDA-MB-231 invasion in vitro, while MMP-3 (stromelysin-1) has been localised around invasive cells of breast tumours in vivo. As MMPs are not stored intracellularly, the ability to localise their expression to their cells of origin is difficult. Methods We utilised the unique in situ-reverse transcription-polymerase chain reaction (IS-RT-PCR) methodology to localise the in vitro and in vivo gene expression of MT1-MMP, MMP-1 and MMP-3 in human breast cancer. In vitro, MMP induction was examined in the MDA-MB-231 and MCF-7 HBC cell lines following exposure to Concanavalin A (Con A). In vivo, we examined their expression in archival paraffin embedded xenografts derived from a range of HBC cell lines of varied invasive and metastatic potential. Mouse xenografts are heterogenous, containing neoplastic human parenchyma with mouse stroma and vasculature and provide a reproducible in vivo model system correlated to the human disease state. Results In vitro, exposure to Con A increased MT1-MMP gene expression in MDA-MB-231 cells and decreased MT1-MMP gene expression in MCF-7 cells. MMP-1 and MMP-3 gene expression remained unchanged in both cell lines. In vivo, stromal cells recruited into each xenograft demonstrated differences in localised levels of MMP gene expression. Specifically, MDA-MB-231, MDA-MB-435 and Hs578T HBC cell lines are able to influence MMP gene expression in the surrounding stroma. Conclusion We have demonstrated the applicability and sensitivity of IS-RT-PCR for the examination of MMP gene expression both in vitro and in vivo. Induction of MMP gene expression in both the epithelial tumour cells and surrounding stromal cells is associated with increased metastatic potential. Our data demonstrate the contribution of the stroma to epithelial MMP gene expression, and highlight the complexity of the role of MMPs in the stromal-epithelial interactions within breast carcinoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To examine matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinases (TIMP) mRNA levels in archival breast cancer biopsies, we employed microdissection to separate tumour tissue from the surrounding breast tissue, or stroma and RT-PCR to determine gross qualitative and small quantitative differences in the patterns of expression. In this study, a significant correlation (p < 0.05, by Mann-Whitney U analysis) between TIMP-2 expression and lymph node involvement was identified, while MMP-11 and TIMP-1 expression patterning also significantly (p < 0.05) differed between those tumours showing calcification and those that did not. When compared by Spearmans’ ρ correlation analysis, a significant association (p < 0.05, ρ = 0.404) was identified in the pattern of MMP-2 and MMP-9 gene expression. In this study, the use of microdissection and a systematic strategy of RT-PCR analysis have allowed us to investigate localized MMP and MMP inhibitor expression within breast tumours. We have identified patterns of gene expression that may further reveal aspects of breast carcinogenesis, and a robust method for examining changes in clinically important genes using archival biopsies and across stroma-tumour boundaries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To examine gene-expression patterning in late-stage breast cancer biopsies, we used a microdissection technique to separate tumor from the surrounding breast tissue or stroma. A DD-PCR protocol was then used to amplify expressed products, which were resolved using PAGE and used as probe to hybridize with representative human arrays and cDNA libraries. The probe derived from the tumor–stroma comparison was hybridized with a gene array and an arrayed cDNA library derived from a GCT of bone; 21 known genes or expressed sequence tags were detected, of which 17 showed differential expression. These included factors associated with epithelial to mesenchymal transition (vimentin), the cargo selection protein (TIP47) and the signal transducer and activator of transcription (STAT3). Northern blot analysis was used to confirm those genes also expressed by representative breast cancer cell lines. Notably, 6 genes of unknown function were restricted to tumor while the majority of stroma-associated genes were known. When applied to transformed breast cancer cell lines (MDA-MB-435 and T47D) that are known to have different metastatic potential, DD array analysis revealed a further 20 genes; 17 of these genes showed differential expression. Use of microdissection and the DD-PCR array protocol allowed us to identify factors whose localized expression within the breast may play a role in abnormal breast development or breast carcinogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To identify chromosomal copy numbers of frequent genetic aberrations within squamous cell carcinomas (SCCs) and solar keratoses (SKs), and provide further evidence to support or challenge current dogma concerning the relationship between these lesions. DESIGN: Retrospective analysis of genetic aberrations in DNA from SK and SCC biopsy specimens by comparative genomic hybridization. SETTING: University-based research laboratory in Queensland, Australia. PATIENTS: Twenty-two biopsy specimens from patients with diagnosed SKs (n = 7), cutaneous SCCs (n = 10), or adjoining lesions (n = 5). MAIN OUTCOME MEASURES: Identification of frequent genetic aberrations both specific to SK and SCC and shared by these lesions to investigate their clonal relationship. RESULTS: Shared genomic imbalances were identified in SK and SCC. Frequent gains were located at chromosome arms 3q, 17q, 4p, 14q, Xq, 5p, 9q, 8q, 17p, and 20q, whereas shared regional losses were observed at 9p, 3p, 13q, 17p, 11p, 8q, and 18p. Significant loss of 18q was observed only in SCC lesions. CONCLUSIONS: Our results demonstrate that numerous chromosomal aberrations are shared by the 2 lesions, suggesting a clonal relationship between SK and SCC. Additionally, the genomic loss of 18q may be a significant event in SK progression to SCC. Finally, the type and frequency of aberrations suggests a common mode of tumorigenesis in SCC-derived tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytogenetic analysis is a powerful tool that allows analysis of chromosomal aberrations associated with diseased states. In particular, a combination of cytogenetic techniques has allowed the identification of aberrations associated with cancer development, including cancers of the skin. This chapter provides a comprehensive overview of cytogenetic alterations in basal and squamous cell carcinomas of the skin. These two distinct lesions have altered karyotypes that are consistent with their malignant potential. Basal cell carcinomas, although relatively stable lesions, are highly associated with recurrent aberrations of chromosomes 6, 7, 9 and X, as detected by a number of cytogenetic techniques. Squamous cell carcinomas, on the other hand are associated with a much higher degree of instability, involving aberrations of chromosomes 3, 7, 8, 11, 13, 17 and 18, as detected using a number of cytogenetic techniques. Overall, the numbers and types of aberrations associated with basal and squamous cell carcinoma, define the characteristic behaviour associated with these lesions and identification of these aberrations may aid in the understanding of malignant potential, prognosis and treatment of these skin cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background L-type amino acid transporters (LATs) uptake neutral amino acids including L-leucine into cells, stimulating mammalian target of rapamycin complex 1 signaling and protein synthesis. LAT1 and LAT3 are overexpressed at different stages of prostate cancer, and they are responsible for increasing nutrients and stimulating cell growth. Methods We examined LAT3 protein expression in human prostate cancer tissue microarrays. LAT function was inhibited using a leucine analog (BCH) in androgen-dependent and -independent environments, with gene expression analyzed by microarray. A PC-3 xenograft mouse model was used to study the effects of inhibiting LAT1 and LAT3 expression. Results were analyzed with the Mann-Whitney U or Fisher exact tests. All statistical tests were two-sided. Results LAT3 protein was expressed at all stages of prostate cancer, with a statistically significant decrease in expression after 4–7 months of neoadjuvant hormone therapy (4–7 month mean = 1.571; 95% confidence interval = 1.155 to 1.987 vs 0 month = 2.098; 95% confidence interval = 1.962 to 2.235; P = .0187). Inhibition of LAT function led to activating transcription factor 4–mediated upregulation of amino acid transporters including ASCT1, ASCT2, and 4F2hc, all of which were also regulated via the androgen receptor. LAT inhibition suppressed M-phase cell cycle genes regulated by E2F family transcription factors including critical castration-resistant prostate cancer regulatory genes UBE2C, CDC20, and CDK1. In silico analysis of BCH-downregulated genes showed that 90.9% are statistically significantly upregulated in metastatic castration-resistant prostate cancer. Finally, LAT1 or LAT3 knockdown in xenografts inhibited tumor growth, cell cycle progression, and spontaneous metastasis in vivo. Conclusion Inhibition of LAT transporters may provide a novel therapeutic target in metastatic castration-resistant prostate cancer, via suppression of mammalian target of rapamycin complex 1 activity and M-phase cell cycle genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Ghrelin is a 28 amino acid peptide hormone that is expressed in the stomach and a range of peripheral tissues, where it frequently acts as an autocrine/paracrine growth factor. Ghrelin is modified by a unique acylation required for it to activate its cognate receptor, the growth hormone secretagogue receptor (GHSR), which mediates many of the actions of ghrelin. Recently, the enzyme responsible for adding the fatty acid residue (octanoyl/acyl group) to the third amino acid of ghrelin, GOAT (ghrelin O-acyltransferase), was identified. Methods We used cell culture, quantitative real-time reverse transcription (RT)-PCR and immunohistochemistry to demonstrate the expression of GOAT in prostate cancer cell lines and tissues from patients. Real-time RT-PCR was used to demonstrate the expression of prohormone convertase (PC)1/3, PC2 and furin in prostate cancer cell lines. Prostate-derived cell lines were treated with ghrelin and desacyl ghrelin and the effect on GOAT expression was measured using quantitative RT-PCR. Results We have demonstrated that GOAT mRNA and protein are expressed in the normal prostate and human prostate cancer tissue samples. The RWPE-1 and RWPE-2 normal prostate-derived cell lines and the LNCaP, DU145, and PC3 prostate cancer cell lines express GOAT and at least one other enzyme that is necessary to produce mature, acylated ghrelin from proghrelin (PC1/3, PC2 or furin). Finally, ghrelin, but not desacyl ghrelin (unacylated ghrelin), can directly regulate the expression of GOAT in the RWPE-1 normal prostate derived cell line and the PC3 prostate cancer cell line. Ghrelin treatment (100nM) for 6 hours significantly decreased GOAT mRNA expression two-fold (P < 0.05) in the PC3 prostate cancer cell line, however, ghrelin did not regulate GOAT expression in the DU145 and LNCaP prostate cancer cell lines. Conclusions This study demonstrates that GOAT is expressed in prostate cancer specimens and cell lines. Ghrelin regulates GOAT expression, however, this is likely to be cell-type specific. The expression of GOAT in prostate cancer supports the hypothesis that the ghrelin axis has autocrine/paracrine roles. We propose that the RWPE-1 prostate cell line and the PC3 prostate cancer cell line may be useful for investigating GOAT regulation and function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD151, a member of the tetraspanin family, is associated with regulation of migration of normal and tumour cells via cell surface microdomain formation. CD151 was found in our laboratory to have a prognostic value in prostate cancer and is a promoter of prostate cancer migration and invasion. These roles involve association with integrins on both cell-cell and cell-stroma levels. Furthermore, CD151 plays a role in endothelial cell motility. CD151 expression was examined in three commonly used prostate cancer cell lines. We investigated CD151 expression, angiogenesis (microvessel density; MVD) and lymphangiogenesis (lymphatic vessel density; LVD) in an orthotopic xenograft model of prostate cancer in matched tumours from primary and secondary sites. CD151 was found to be heterogeneously expressed across different prostate cancer cell lines and the levels of CD151 expression were significantly higher in the highly tumorigenic, androgen-insensitive cells PC-3 and DU-145 compared to the androgen-sensitive cell line LNCaP (P<0.05). The majority of in vivo xenografts developed pelvic lymph node metastases. Importantly, primary tumours that developed metastasis had significantly higher CD151 expression and MVD compared to those which did not develop metastasis (P<0.05). We identified, for the first time, that CD151 expression is associated with LVD in prostate cancer. These findings underscore the potential role of CD151 and angiogenesis in the metastatic potential of prostate cancer. CD151 has a prognostic value in this mouse model of prostate cancer and may play a role in lymphangiogenesis. CD151 is likely an important regulator of cancer cell communication with the surrounding microenvironment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current routine cell culture techniques are only poorly suited to capture the physiological complexity of tumor microenvironments, wherein tumor cell function is affected by intricate three-dimensional (3D), integrin-dependent cell-cell and cell-extracellular matrix (ECM) interactions. 3D cell cultures allow the investigation of cancer-associated proteases like kallikreins as they degrade ECM proteins and alter integrin signaling, promoting malignant cell behaviors. Here, we employed a hydrogel microwell array platform to probe using a high-throughput mode how ovarian cancer cell aggregates of defined size form and survive in response to the expression of kallikreins and treatment with paclitaxel, by performing microscopic, quantitative image, gene and protein analyses dependent on the varying microwell and aggregate sizes. Paclitaxel treatment increased aggregate formation and survival of kallikrein-expressing cancer cells and levels of integrins and integrin-related factors. Cancer cell aggregate formation was improved with increasing aggregate size, thereby reducing cell death and enhancing integrin expression upon paclitaxel treatment. Therefore, hydrogel microwell arrays are a powerful tool to screen the viability of cancer cell aggregates upon modulation of protease expression, integrin engagement and anti-cancer treatment providing a micro-scaled yet high-throughput technique to assess malignant progression and drug-resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estrogen is known to stimulate the proliferation and basement membrane invasiveness of the MCF-7 human breast cancer cell line. We have compared the new steroidal antiestrogen ICI 164,384, the triphenylethylene 4-hydroxytamoxifen (OHT), and the benzothiophene LY 117018, for their effects on the proliferation and invasiveness of the MCF-7 cell line and its antiestrogen-resistant variant LY-2. While all three antiestrogens blocked the proliferative effects of 17β-estradiol on MCF-7 cells, OHT and LY 117018, but not ICI 164,384 stimulated their proliferation in the absence of estrogen. The proliferative effects of OHT and LY 117018 were blocked by ICI 164,384. Basement membrane invasiveness of MCF-7 cells was stimulated by 17β-estradiol and OHT, but not LY 117018 or ICI 164,384. Both ICI 164,384 and Ly 117018 were able to block the invasiveness induced by either 17β-estradiol or OHT. The LY-2 antiestrogen-resistant variant of the MCF-7 cell line showed increased basal proliferation, and responded only slightly to estrogen. ICI 164,384, but not OHT or LY 117018 antagonized the effects of 17β-estradiol, but did not reduce proliferation below control levels. The LY-2 line was not resistant to the antiestrogenic effects of LY 117018 or ICI 164,384 on invasiveness, and was stimulated by LY 117018 for this parameter. Thus, ICI 164,384 is a pure antiestrogen for MCF-7 cell proliferation and invasiveness, and may offer clinical advantage over nonsteroidal antiestrogens which can stimulate these activities in tumor models in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kaposi's sarcoma (KS) in general, and acquired immunodeficiency syndrome-related KS (AIDS-KS) in particular, is a highly invasive and intensely angiogenic neoplasm of unknown cellular origin. We have recently established AIDS-KS cells in long term culture and reported the development of KS-like lesions in nude mice inoculated with these cells. Here, we have examined the in vitro invasiveness of basement membrane by AIDS-KS cells, as well as the effect(s) of their supernatants on the migration and invasiveness of human vascular endothelial cells. AIDS-KS cells were highly invasive in the Boyden chamber invasion assay and formed invasive, branching colonies in a 3-dimensional gel (Matrigel). Normal endothelial cells form tube-like structures on Matrigel. AIDS-KS cell-conditioned media induced endothelial cells to form invasive clusters in addition to tubes. KS-cell-conditioned media, when placed in the lower compartment of the Boyden chamber, stimulated the migration of human and bovine vascular endothelial cells across filters coated with either small amounts of collagen IV (chemotaxis) or a Matrigel barrier (invasion). Basic fibroblast growth factor could also induce endothelial cell chemotaxis and invasion in these assays. However, when antibodies to basic fibroblast growth factor were used the invasive activity induced by the AIDS-KS-cell-conditioned media was only marginally inhibited, suggesting that the large quantities of basic fibroblast growth factor-like material released by the AIDS-KS cells are not the main mediators of this effect. Specific inhibitors of laminin and collagenase IV action, which represent critical determinants of basement membrane invasion, blocked the invasiveness of the AIDS-KS cell-activated endothelial cells in these assays. These data indicate that KS cells appear to be of smooth muscle origin but secrete a potent inducer of endothelial cell chemotaxis and invasiveness which could be responsible for angiogenesis and the resulting highly vascularized lesions. These assays appear to be a model to study the invasive spread and angiogenic capacity of human AIDS-related KS and should prove useful in the identification of molecular mediators and potential inhibitors of neoplastic neovascularization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperactive inflammatory responses following cancer initiation have led to cancer being described as a 'wound that never heals'. These inflammatory responses elicit signals via NFκB leading to IL-6 production, and IL-6 in turn has been shown to induce epithelial to mesenchymal transition in breast cancer cells in vitro, implicating a role for this cytokine in cancer cell invasion. We previously have shown that conditioned medium derived from cancer-associated fibroblasts induced an Epithelial to Mesenchymal transition (EMT) in PMC42-LA breast cancer cells and we have now identify IL-6 as present in this medium. We further show that IL-6 is expressed approximately 100 fold higher in a cancer-associated fibroblast line compared to normal fibroblasts. Comparison of mouse-specific (stroma) and human-specific (tumor) IL-6 mRNA expression from MCF-7, MDA MB 468 and MDA MB 231 xenografts also indicated the stroma rather than tumor as a significantly higher source of IL-6 expression. Mast cells (MCs) feature in inflammatory cancer-associated stroma, and activated MCs secrete IL-6. We observed a higher MC index (average number of mast cells per xenograft section/average tumor size) in MDA MB 468 compared to MDA MB 231 xenografts, where all MC were observed to be active (degranulating). This higher MC index correlated with greater mouse-specific IL-6 expression in the MDA MB 468 xenografts, implicating MC as an important source of stromal IL-6. Furthermore, immunohistochemistry on these xenografts for pSTAT3, which lies downstream of the IL-6 receptor indicated frequent correlations between pSTAT3 and mast cell positive cells. Analysis of publically available databases for IL-6 expression in patient tissue revealed higher IL-6 in laser capture microdissected stroma compared to adjacent tissue epithelium from patients with inflammatory breast cancer (IBC) and invasive non-inflammatory breast cancer (non-IBC) and we show that IL-6 expression was significantly higher in Basal versus Luminal molecular/phenotypic groupings of breast cancer cell lines. Finally, we discuss how afferent and efferent IL-6 pathways may participate in a positive feedback cycle to dictate tumor progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two in vitro and two in vivo assays for the study of human cancer invasion and metastasis are described. The assays include in vitro invasiveness through an artificial basement membrane (Matrigel®), invasiveness and metastasis in nude mice of subcutaneously injected LacZ-transduced human tumor cells, in vitro adherence to basement membrane components, and LacZ-transduced human cancer cells injected intravenously into nude mice. In studies of the processes involved in human cancer cell invasion and metastasis, these four assays were found to be complementary, and thus provide a set of test systems for preclinical screening of agents which interfere with these processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We initially described a rat chamber model with an inserted arteriovenous pedicle which spontaneously generates 3-dimensional vascularized connective tissue (Tanaka Y et al., Br J Plast Surg 2000; 53: 51-7). More recently we have developed a murine chamber model containing reconstituted basement membrane (Matrigel®) and FGF-2 that generates vascularized adipose tissue in vivo (Cronin K et al., Plast Reconstr Surg 2004; in press). We have extended this work to assess the cellular and matrix requirements for the Matrigel®- induced neo-adipogenesis. We found that chambers sealed to host fat were unable to grow new adipose tissue. In these chambers the Matrigel® became vascularized with maximal outgrowth of vessels extending to the periphery at 6 weeks. A small amount of adipose tissue was found adjacent to the vessels, most likely arising from periadventitial adipose tissue. In contrast, chambers open to interaction with endogenous adipose tissue showed abundant new fat, and partial exposure to adjacent adipose tissue clearly showed neo-adipogenesis only in this area. Addition of small amounts of free fat to the closed chamber containing Matrigel® was able to induce neo-adipogenesis. Addition of small pieces of human fat also caused neo-adipogenesis in immunocompromised (SCID) mice. Also, we found Matrigel® to induce adipogenesis of Lac-Z-tagged (Rosa-26) murine bone marrow-derived mesenchymal stem cells, and cells similar to these have been isolated from human adipose tissue. Given that Matrigel® is a mouse product and cannot be used in humans, we have started investigating alternative matrix scaffolds for adipogenesis such as the PDA-approved PLGA, collagen and purified components derived from Matrigel®, such as laminin-1. The optimal conditions for adipogenesis with these matrices are still being elucidated. In conclusion, we have demonstrated that a precursor cell source inside the chamber is essential for the generation of vascularized adipose tissue in vivo. This technique offers unique potential for the reconstruction of soft tissue defects and may enable the generation of site-specific tissue using the correct microenvironment.