182 resultados para bacterial strain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteases with important roles for bacterial pathogens which specifically reside within intracellular vacuoles are frequently homologous to those which have important virulence functions for other bacteria. Research has identified that some of these conserved proteases have evolved specialised functions for intracellular vacuole residing bacteria. Unique proteases with pathogenic functions have also been described from Chlamydia, Mycobacteria, and Legionella. These findings suggest that there are further novel functions for proteases from these bacteria which remain to be described. This review summarises recent findings of novel protease functions from the intracellular human pathogenic bacteria which reside exclusively in vacuoles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The previous investigations have shown that the modal strain energy correlation method, MSEC, could successfully identify the damage of truss bridge structures. However, it has to incorporate the sensitivity matrix to estimate damage and is not reliable in certain damage detection cases. This paper presents an improved MSEC method where the prediction of modal strain energy change vector is differently obtained by running the eigensolutions on-line in optimisation iterations. The particular trail damage treatment group maximising the fitness function close to unity is identified as the detected damage location. This improvement is then compared with the original MSEC method along with other typical correlation-based methods on the finite element model of a simple truss bridge. The contributions to damage detection accuracy of each considered mode is also weighed and discussed. The iterative searching process is operated by using genetic algorithm. The results demonstrate that the improved MSEC method suffices the demand in detecting the damage of truss bridge structures, even when noised measurement is considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydia pneumoniae is a common human and animal pathogen associated with a wide range of upper and lower respiratory tract infections. In more recent years there has been increasing evidence to suggest a link between C. pneumoniae and chronic diseases in humans, including atherosclerosis, stroke and Alzheimer’s disease. C. pneumoniae human strains show little genetic variation, indicating that the human-derived strain originated from a common ancestor in the recent past. Despite extensive information on the genetics and morphology processes of the human strain, knowledge concerning many other hosts (including marsupials, amphibians, reptiles and equines) remains virtually unexplored. The koala (Phascolarctos cinereus) is a native Australian marsupial under threat due to habitat loss, predation and disease. Koalas are very susceptible to chlamydial infections, most commonly affecting the conjunctiva, urogenital tract and/or respiratory tract. To address this gap in the literature, the present study (i) provides a detailed description of the morphologic and genomic architecture of the C. pneumoniae koala (and human) strain, and shows that the koala strain is microscopically, developmentally and genetically distinct from the C. pneumoniae human strain, and (ii) examines the genetic relationship of geographically diverse C. pneumoniae isolates from human, marsupial, amphibian, reptilian and equine hosts, and identifies two distinct lineages that have arisen from animal-to-human cross species transmissions. Chapter One of this thesis explores the scientific problem and aims of this study, while Chapter Two provides a detailed literature review of the background in this field of work. Chapter Three, the first results chapter, describes the morphology and developmental stages of C. pneumoniae koala isolate LPCoLN, as revealed by fluorescence and transmission electron microscopy. The profile of this isolate, when cultured in HEp-2 human epithelial cells, was quite different to the human AR39 isolate. Koala LPCoLN inclusions were larger; the elementary bodies did not have the characteristic pear-shaped appearance, and the developmental cycle was completed within a shorter period of time (as confirmed by quantitative real-time PCR). These in vitro findings might reflect biological differences between koala LPCoLN and human AR39 in vivo. Chapter Four describes the complete genome sequence of the koala respiratory pathogen, C. pneumoniae LPCoLN. This is the first animal isolate of C. pneumoniae to be fully-sequenced. The genome sequence provides new insights into genomic ‘plasticity’ (organisation), evolution and biology of koala LPCoLN, relative to four complete C. pneumoniae human genomes (AR39, CWL029, J138 and TW183). Koala LPCoLN contains a plasmid that is not shared with any of the human isolates, there is evidence of gene loss in nucleotide salvage pathways, and there are 10 hot spot genomic regions of variation that were previously not identified in the C. pneumoniae human genomes. Sequence (partial-length) from a second, independent, wild koala isolate (EBB) at several gene loci confirmed that the koala LPCoLN isolate was representative of a koala C. pneumoniae strain. The combined sequence data provides evidence that the C. pneumoniae animal (koala LPCoLN) genome is ancestral to the C. pneumoniae human genomes and that human infections may have originated from zoonotic infections. Chapter Five examines key genome components of the five C. pneumoniae genomes in more detail. This analysis reveals genomic features that are shared by and/or contribute to the broad ecological adaptability and evolution of C. pneumoniae. This analysis resulted in the identification of 65 gene sequences for further analysis of intraspecific variation, and revealed some interesting differences, including fragmentation, truncation and gene decay (loss of redundant ancestral traits). This study provides valuable insights into metabolic diversity, adaptation and evolution of C. pneumoniae. Chapter Six utilises a subset of 23 target genes identified from the previous genomic comparisons and makes a significant contribution to our understanding of genetic variability among C. pneumoniae human (11) and animal (6 amphibian, 5 reptilian, 1 equine and 7 marsupial hosts) isolates. It has been shown that the animal isolates are genetically diverse, unlike the human isolates that are virtually clonal. More convincing evidence that C. pneumoniae originated in animals and recently (in the last few hundred thousand years) crossed host species to infect humans is provided in this study. It is proposed that two animal-to-human cross species events have occurred in the context of the results, one evident by the nearly clonal human genotype circulating in the world today, and the other by a more animal-like genotype apparent in Indigenous Australians. Taken together, these data indicate that the C. pneumoniae koala LPCoLN isolate has morphologic and genomic characteristics that are distinct from the human isolates. These differences may affect the survival and activity of the C. pneumoniae koala pathogen in its natural host, in vivo. This study, by utilising the genetic diversity of C. pneumoniae, identified new genetic markers for distinguishing human and animal isolates. However, not all C. pneumoniae isolates were genetically diverse; in fact, several isolates were highly conserved, if not identical in sequence (i.e. Australian marsupials) emphasising that at some stage in the evolution of this pathogen, there has been an adaptation/s to a particular host, providing some stability in the genome. The outcomes of this study by experimental and bioinformatic approaches have significantly enhanced our knowledge of the biology of this pathogen and will advance opportunities for the investigation of novel vaccine targets, antimicrobial therapy, or blocking of pathogenic pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the feasibility of using structural modal strain energy as a parameter employed in correlation- based damage detection method for truss bridge structures. It is an extension of the damage detection method adopting multiple damage location assurance criterion. In this paper, the sensitivity of modal strain energy to damage obtained from the analytical model is incorporated into the correlation objective function. Firstly, the sensitivity matrix of modal strain energy to damage is conducted offline, and for an arbitrary damage case, the correlation coefficient (objective function) is calculated by multiplying the sensitivity matrix and damage vector. Then, a genetic algorithm is used to iteratively search the damage vector maximising the correlation between the corresponding modal strain energy change (hypothesised) and its counterpart in measurement. The proposed method is simulated and compared with the conventional methods, e.g. frequency-error method, coordinate modal assurance criterion and multiple damage location assurance criterion using mode shapes on a numerical truss bridge structure. The result demonstrates the modal strain energy correlation method is able to yield acceptable damage detection outcomes with less computing efforts, even in a noise contaminated condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Axial loads of load bearing elements impact on the vibration characteristics. Several methods have been developed to quantify axial loads and hence axial deformations of individual structural members using their natural frequencies. Nevertheless, these methods cannot be applied to individual members in structural framing systems as the natural frequency is a global parameter for the entire framing system. This paper proposes an innovative method which uses modal strain energy phenomenon to quantify axial deformations of load bearing elements of structural framing systems. The procedure is illustrated through examples and results confirm that the proposed method has an ability to quantify the axial deformations of individual elements of structural framing systems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A point interpolation method with locally smoothed strain field (PIM-LS2) is developed for mechanics problems using a triangular background mesh. In the PIM-LS2, the strain within each sub-cell of a nodal domain is assumed to be the average strain over the adjacent sub-cells of the neighboring element sharing the same field node. We prove theoretically that the energy norm of the smoothed strain field in PIM-LS2 is equivalent to that of the compatible strain field, and then prove that the solution of the PIM- LS2 converges to the exact solution of the original strong form. Furthermore, the softening effects of PIM-LS2 to system and the effects of the number of sub-cells that participated in the smoothing operation on the convergence of PIM-LS2 are investigated. Intensive numerical studies verify the convergence, softening effects and bound properties of the PIM-LS2, and show that the very ‘‘tight’’ lower and upper bound solutions can be obtained using PIM-LS2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Employees are vital assets for an enterprise and therefore need to be valued by their employers. Employers can create a safe and reduced stress environment to work; managers thus provide organizational support through their managerial role by caring for their subordinates’ well-being and by providing work advisory. By providing the managerial support to the employees, organizations can reduce costs and increase productivity. Past research has investigated the role of organizational support on stress as a single model either moderating or mediating role. The previous findings were also inconsistent. The purpose of this study was to test both the mediating and the moderating effect of the perceived managerial support on role stressors and psychological outcomes. This study used 380 participants taken from several small firms in Thailand. The results confirmed the mediation role of perceived managerial support, but not the moderation effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Streptococcus pyogenes, also known as Group A Streptococcus (GAS) has been associated with a range of diseases from the mild pharyngitis and pyoderma to more severe invasive infections such as streptococcal toxic shock. GAS also causes a number of non-suppurative post-infectious diseases such as rheumatic fever, rheumatic heart disease and glomerulonephritis. The large extent of GAS disease burden necessitates the need for a prophylactic vaccine that could target the diverse GAS emm types circulating globally. Anti-GAS vaccine strategies have focused primarily on the GAS M-protein, an extracellular virulence factor anchored to GAS cell wall. As opposed to the hypervariable N-terminal region, the C-terminal portion of the protein is highly conserved among different GAS emm types and is the focus of a leading GAS vaccine candidate, J8-DT/alum. The vaccine candidate J8-DT/alum was shown to be immunogenic in mice, rabbits and the non-human primates, hamadryas baboons. Similar responses to J8-DT/alum were observed after subcutaneous and intramuscular immunization with J8-DT/alum, in mice and in rabbits. Further assessment of parameters that may influence the immunogenicity of J8-DT demonstrated that the immune responses were identical in male and female mice and the use of alum as an adjuvant in the vaccine formulation significantly increased its immunogenicity, resulting in a long-lived serum IgG response. Contrary to the previous findings, the data in this thesis indicates that a primary immunization with J8-DT/alum (50ƒÊg) followed by a single boost is sufficient to generate a robust immune response in mice. As expected, the IgG response to J8- DT/alum was a Th2 type response consisting predominantly of the isotype IgG1 accompanied by lower levels of IgG2a. Intramuscular vaccination of rabbits with J8-DT/alum demonstrated that an increase in the dose of J8-DT/alum up to 500ƒÊg does not have an impact on the serum IgG titers achieved. Similar to the immune response in mice, immunization with J8-DT/alum in baboons also established that a 60ƒÊg dose compared to either 30ƒÊg or 120ƒÊg was sufficient to generate a robust immune response. Interestingly, mucosal infection of naive baboons with a M1 GAS strain did not induce a J8-specific serum IgG response. As J8-DT/alum mediated protection has been previously reported to be due to the J8- specific antibody formed, the efficacy of J8-DT antibodies was determined in vitro and in vivo. In vitro opsonization and in vivo passive transfer confirmed the protective potential of J8-DT antibodies. A reduction in the bacterial burden after challenge with a bioluminescent M49 GAS strain in mice that were passively administered J8-DT IgG established that protection due to J8-DT was mediated by antibodies. The GAS burden in infected mice was monitored using bioluminescent imaging in addition to traditional CFU assays. Bioluminescent GAS strains including the ‘rheumatogenic’ M1 GAS could not be generated due to limitations with transformation of GAS, however, a M49 GAS strain was utilized during BLI. The M49 serotype is traditionally a ‘nephritogenic’ serotype associated with post-streptococcal glomerulonephritis. Anti- J8-DT antibodies now have been shown to be protective against multiple GAS strains such as M49 and M1. This study evaluated the immunogenicity of J8-DT/alum in different species of experimental animals in preparation for phase I human clinical trials and provided the ground work for the development of a rapid non-invasive assay for evaluation of vaccine candidates.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modal strain energy method, which depends on the vibration characteristics of the structure, has been reasonably successful in identifying and localising damage in the structure. However, existing strain energy methods require the first few modes to be measured to provide meaningful damage detection. Use of individual modes with existing strain energy methods may indicate false alarms or may not detect the damage at or near the nodal points. This paper proposes a new modal strain energy based damage index which can detect and localize the damage using any one of the modes measured and illustrates its application for beam structures. It becomes evident that the proposed strain energy based damage index also has potential for damage quantification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation Behaviour of microcrystalline (mc) and nanocrystalline (nc) Mg-5%Al alloys produced by hot extrusion of ball-milled powders were investigated using instrumented indentation tests. The hardness values of the mc and nc metals exhibited indentation size effect (ISE), with nc alloys showing weaker ISE. The highly localized dislocation activities resulted in a small activation volume, hence enhanced strain rate sensitivity. Relative higher strain rate sensitivity and the negative Hall-Petch Relationship suggested the increasingly important role of grain boundary mediated mechanisms when the grain size decreased to nanometer region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein extracts from 22 species of marine macroalgae from Florida and North Carolina were compared for their abilities to agglutinate sheep and rabbit erythrocytes. Protein extracts from 21 algal species agglutinated rabbit erythrocytes compared to 19 for sheep erythrocytes. However, agglutination by brown algal extracts was variable. The agglutination produced by protein extracts from Dictyota dichotoma could be blocked by addition of polyvinylpyrrolidone. Protein extracts from North Carolina macroalgae were also tested against five bacterial species. Three of these agglutinated bacterial cells. Ulva curvata and Bryopsis plumosa agglutinated all five species. Protein extracts from five species of Florida algae were tested for their effects on mitogenesis in mouse splenocytes and human lymphocytes. Gracilaria tikvahiae HBOI Strain G-5, Ulva rigida and Gracilaria verrucosa HBOI Strain G-16S stimulated mitogenesis in mouse splenocytes, while Gracilaria tikvahiae HBOI Strain G-16stimulated mitogenesis in human lymphocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the relationships between job demands (in the form of role stressors and emotional management) and employee burnout amongst high contact service employees. Employees in customer facing roles are frequently required to manage overwhelming, conflicting or ambiguous demands, which they may feel ill-equipped to handle. Simultaneously, they must manage the emotions they display towards customers, suppressing some, and expressing others, be they genuine or contrived. If the in-role effort required of employees exceeds their inherent capacity to cope, burnout may result. Burnout, in turn, can have serious detrimental consequences for the psychological well being of employees. We find that both emotional management and role stressors impact burnout. We also confirm that burnout predicts psychological strain. In line with the Job Demands and Resources Model, we examine the mitigating impact of perceived support on these relationships but do not find a significant mitigating impact.