79 resultados para T-cell Responses


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: HIV-1 Gag virus like particles (VLPs) used as candidate vaccines are regarded as inert particles as they contain no replicative nucleic acid, although they do encapsidate cellular RNAs. During HIV-1 Gag VLP production in baculovirus-based expression systems, VLPs incorporate the baculovirus Gp64 envelope glycoprotein, which facilitates their entry into mammalian cells. This suggests that HIV-1 Gag VLPs produced using this system facilitate uptake and subsequent expression of encapsidated RNA in mammalian cells - an unfavourable characteristic for a vaccine. Methods. HIV-1 Gag VLPs encapsidating reporter chloramphenicol acetyl transferase (CAT) RNA, were made in insect cells using the baculovirus expression system. The presence of Gp64 on the VLPs was verified by western blotting and RT-PCR used to detect and quantitate encapsidated CAT RNA. VLP samples were heated to inactivate CAT RNA. Unheated and heated VLPs incubated with selected mammalian cell lines and cell lysates tested for the presence of CAT protein by ELISA. Mice were inoculated with heated and unheated VLPs using a DNA prime VLP boost regimen. Results: HIV-1 Gag VLPs produced had significantly high levels of Gp64 (∼1650 Gp64 molecules/VLP) on their surfaces. The amount of encapsidated CAT RNA/g Gag VLPs ranged between 0.1 to 7 ng. CAT protein was detected in 3 of the 4 mammalian cell lines incubated with VLPs. Incubation with heated VLPs resulted in BHK-21 and HeLa cell lysates showing reduced CAT protein levels compared with unheated VLPs and HEK-293 cells. Mice inoculated with a DNA prime VLP boost regimen developed Gag CD8 and CD4 T cell responses to GagCAT VLPs which also boosted a primary DNA response. Heating VLPs did not abrogate these immune responses but enhanced the Gag CD4 T cell responses by two-fold. Conclusions: Baculovirus-produced HIV-1 Gag VLPs encapsidating CAT RNA were taken up by selected mammalian cell lines. The presence of CAT protein indicates that encapsidated RNA was expressed in the mammalian cells. Heat-treatment of the VLPs altered the ability of protein to be expressed in some cell lines tested but did not affect the ability of the VLPs to stimulate an immune response when inoculated into mice. © 2011 Valley-Omar et al; licensee BioMed Central Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

HIV-1 Pr55 Gag virus-like particles (VLPs) are strong immunogens with potential as candidate HIV vaccines. VLP immunogenicity can be broadened by making chimaeric Gag molecules: however, VLPs incorporating polypeptides longer than 200 aa fused in frame with Gag have not yet been reported. We constructed a range of gag-derived genes encoding in-frame C-terminal fusions of myristoylation-competent native Pr55Gag and p6-truncated Gag (Pr50Gag) to test the effects of polypeptide length and sequence on VLP formation and morphology, in an insect cell expression system. Fused sequences included a modified reverse transcriptase-Tat-Nef fusion polypeptide (RTTN, 778 aa), and truncated versions of RTTN ranging from 113 aa to 450 aa. Baculovirus-expressed chimaeric proteins were examined by western blot and electron microscopy. All chimaeras formed VLPs which could be purified by sucrose gradient centrifugation. VLP diameter increased with protein MW, from ∼100 nm for Pr55Gag to ∼250 nm for GagRTTN. The presence or absence of the Gag p6 region did not obviously affect VLP formation or appearance. GagRT chimaeric particles were successfully used in mice to boost T-cell responses to Gag and RT that were elicited by a DNA vaccine encoding a GagRTTN polypeptide, indicating the potential of such chimaeras to be used as candidate HIV vaccines. © 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chlamydia pneumoniae commonly causes respiratory tract infections in children, and epidemiological investigations strongly link infection to the pathogenesis of asthma. The immune system in early life is immature and may not respond appropriately to pathogens. Toll-like receptor (TLR)2 and 4 are regarded as the primary pattern recognition receptors that sense bacteria, however their contribution to innate and adaptive immunity in early life remains poorly defined. We investigated the role of TLR2 and 4 in the induction of immune responses to Chlamydia muridarum respiratory infection, in neonatal wild-type (Wt) or TLR2-deficient (−/−), 4−/− or 2/4−/− BALB/c mice. Wt mice had moderate disease and infection. TLR2−/− mice had more severe disease and more intense and prolonged infection compared to other groups. TLR4−/− mice were asymptomatic. TLR2/4−/− mice had severe early disease and persistent infection, which resolved thereafter consistent with the absence of symptoms in TLR4−/− mice. Wt mice mounted robust innate and adaptive responses with an influx of natural killer (NK) cells, neutrophils, myeloid (mDCs) and plasmacytoid (pDCs) dendritic cells, and activated CD4+ and CD8+ T-cells into the lungs. Wt mice also had effective production of interferon (IFN)γ in the lymph nodes and lung, and proliferation of lymph node T-cells. TLR2−/− mice had more intense and persistent innate (particularly neutrophil) and adaptive cell responses and IL-17 expression in the lung, however IFNγ responses and T-cell proliferation were reduced. TLR2/4−/− mice had reduced innate and adaptive responses. Most importantly, neutrophil phagocytosis was impaired in the absence of TLR2. Thus, TLR2 expression, particularly on neutrophils, is required for effective control of Chlamydia respiratory infection in early life. Loss of control of infection leads to enhanced but ineffective TLR4-mediated inflammatory responses that prolong disease symptoms. This indicates that TLR2 agonists may be beneficial in the treatment of early life Chlamydia infections and associated diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Despite the critical role of immunoglobulin E (IgE) in allergy, circulating IgE+ B cells are scarce. Here, we describe in patients with allergic rhinitis B cells with a memory phenotype responding to a prototypic aeroallergen. Methods Fifteen allergic rhinitis patients with grass pollen allergy and 13 control subjects were examined. Blood mononuclear cells stained with carboxyfluorescein diacetate succinimidyl ester (CFSE) were cultured with Bahia grass pollen. Proliferation and phenotype were assessed by multicolour flow cytometry. Results In blood of allergic rhinitis patients with high serum IgE to grass pollen, most IgEhi cells were CD123+ HLA-DR- basophils, with IgE for the major pollen allergen (Pas n 1). Both B and T cells from pollen-allergic donors showed higher proliferation to grass pollen than nonallergic donors (P = 0.002, and 0.010, respectively), whereas responses to vaccine antigens and mitogen did not differ between groups. Allergen-driven B cells that divided rapidly (CD19mid CD3- CFSElo) showed higher CD27 (P = 0.008) and lower CD19 (P = 0.004) and CD20 (P = 0.004) expression than B cells that were slow to respond to allergen (CD19hi CD3- CFSEmid). Moreover, rapidly dividing allergen-driven B cells (CD19mid CFSElo CD27hi) showed higher expression of the plasmablast marker CD38 compared with B cells (CD19hi CFSEmid CD27lo) that were slow to divide. Conclusion Patients with pollen allergy but not control donors have a population of circulating allergen-specific B cells with the phenotype and functional properties of adaptive memory B-cell responses. These cells could provide precursors for allergen-specific IgE production upon allergen re-exposure. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The causes of autoimmune diseases have yet to be fully elucidated. Autoantibodies, autoreactive T cell responses, the presence of a predisposing major histocompatibility complex (MHC) haplotype and responsiveness to corticosteroids are features, and some are possibly contributory causes of autoimmune disease. The most challenging question is how autoimmune diseases are triggered. Molecular mimicry of host cell determinants by epitopes of infectious agents with ensuing cross-reactivity is one of the most popular yet still controversial theories for the initiation of autoimmune diseases [1]. Throughout the 1990s, hundreds of research articles focusing to various extents on epitope mimicry, as it is more accurately described in an immunological context, were published annually. Many of these articles presented data that were consistent with the hypothesis of mimicry but that did not actually prove the theory. Other equally convincing reports indicated that epitope mimicry was not the cause of the autoimmune disease despite sequence similarity between molecules of infectious agents and the host. Some 20 years ago, Rothman [2] proposed a model for disease causation and I have used this as a framework to examine the role of epitope mimicry in the development of autoimmune disease. The thesis of Rothman’s model is that an effect, in this instance autoimmune disease, arises as a result of a cause. In most cases, multiple-component causes contribute synergistically to yield the effect, and each of these components alone is insufficient as a cause. Logically, some component causes, such as the presence of a particular autoimmune response, are also necessary causes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Memory T cells develop early during the preclinical stages of autoimmune diseases and have traditionally been considered resistant to tolerance induction. As such, they may represent a potent barrier to the successful immunotherapy of established autoimmune diseases. It was recently shown that memory CD8+ T cell responses are terminated when Ag is genetically targeted to steady-state dendritic cells. However, under these conditions, inactivation of memory CD8+ T cells is slow, allowing transiently expanded memory CD8+ T cells to exert tissue-destructive effector function. In this study, we compared different Ag-targeting strategies and show, using an MHC class II promoter to drive Ag expression in a diverse range of APCs, that CD8+ memory T cells can be rapidly inactivated by MHC class II+ hematopoietic APCs through a mechanism that involves a rapid and sustained downregulation of TCR, in which the effector response of CD8+ memory cells is rapidly truncated and Ag-expressing target tissue destruction is prevented. Our data provide the first demonstration that genetically targeting Ag to a broad range of MHC class II+ APC types is a highly efficient way to terminate memory CD8+ T cell responses to prevent tissue-destructive effector function and potentially established autoimmune diseases. Copyright © 2010 by The American Association of Immunologists, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose/Objective: The basis for poor outcomes in some patients post transfusion remains largely unknown. Despite leukodepletion, there is still evidence of immunomodulatory effects of transfusion that require further study. In addition, there is evidence that the age of blood components transfused significantly affects patient outcomes. Myeloid dendritic cell (DC) and monocyte immune function were studied utilising an in vitro whole blood model of transfusion. Materials and methods: Freshly collected (‘recipient’) whole blood was cultured with ABO compatible leukodepleted PRBC at 25% blood replacement-volume (6hrs). PRBC were assayed at [Day (D) 2, 14, 28and 42 (date-of expiry)]. In parallel, LPS or Zymosan (Zy) were added to mimic infection. Recipients were maintained for the duration of the time course (2 recipients, 4 PRBC units, n = 8).Recipient DC and monocyte intracellular cytokines and chemokines (IL-6, IL-10, IL-12,TNF-a, IL-1a, IL-8, IP-10, MIP-1a, MIP-1b, MCP-1) were measured using flow cytometry. Changes in immune response were calculated by comparison to a parallel no transfusion control (Wilcoxin matched pairs). Influence of storage age was calculated using ANOVA. Results: Significant suppression of DC and monocyte inflammatory responses were evident. DC and monocyte production of IL-1a was reduced following exposure to PRBC regardless of storage age (P < 0.05 at all time points). Storage independent PRBC mediated suppression of DC and monocyte IL-1a was also evident in cultures costimulated with Zy. In cultures co-stimulated with either LPS or Zy, significant suppression of DC and monocyte TNF-a and IL-6 was also evident. PRBC storage attenuated monocyte TNF-a production when co-cultured with LPS (P < 0.01 ANOVA). DC and monocyte production of MIP-1a was significantly reduced following exposure to PRBC (DC: P < 0.05 at D2, 28, 42; Monocyte P < 0.05 all time points). In cultures co-stimulated with LPS and zymosan, a similar suppression of MIP-1a production was also evident, and production of both DC and monocyte MIP-1b and IP-10 were also significantly reduced. Conclusions: The complexity of the transfusion context was reflected in the whole blood approach utilised. Significant suppression of these key DC and monocyte immune responses may contribute to patient outcomes, such as increased risk of infection and longer hospital stay, following blood transfusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthetic polymers have attracted much attention in tissue engineering due to their ability to modulate biomechanical properties. This study investigated the feasibility of processing poly(varepsilon-caprolactone) (PCL) homopolymer, PCL-poly(ethylene glycol) (PEG) diblock, and PCL-PEG-PCL triblock copolymers into three-dimensional porous scaffolds. Properties of the various polymers were investigated by dynamic thermal analysis. The scaffolds were manufactured using the desktop robot-based rapid prototyping technique. Gross morphology and internal three-dimensional structure of scaffolds were identified by scanning electron microscopy and micro-computed tomography, which showed excellent fusion at the filament junctions, high uniformity, and complete interconnectivity of pore networks. The influences of process parameters on scaffolds' morphological and mechanical characteristics were studied. Data confirmed that the process parameters directly influenced the pore size, porosity, and, consequently, the mechanical properties of the scaffolds. The in vitro cell culture study was performed to investigate the influence of polymer nature and scaffold architecture on the adhesion of the cells onto the scaffolds using rabbit smooth muscle cells. Light, scanning electron, and confocal laser microscopy showed cell adhesion, proliferation, and extracellular matrix formation on the surface as well as inside the structure of both scaffold groups. The completely interconnected and highly regular honeycomb-like pore morphology supported bridging of the pores via cell-to-cell contact as well as production of extracellular matrix at later time points. The results indicated that the incorporation of hydrophilic PEG into hydrophobic PCL enhanced the overall hydrophilicity and cell culture performance of PCL-PEG copolymer. However, the scaffold architecture did not significantly influence the cell culture performance in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin-like growth factor binding proteins (IGFBPs) are prime regulators of IGF-action in numerous cell types including the retinal pigment epithelium (RPE). The RPE performs several functions essential for vision, including growth factor secretion and waste removal via a phagocytic process mediated in part by vitronectin (Vn). In the course of studying the effects of IGFBPs on IGF-mediated VEGF secretion and Vn-mediated phagocytosis in the RPE cell line ARPE-19, we have discovered that these cells avidly ingest synthetic microspheres (2.0 μm diameter) coated with IGFBPs. Given the novelty of this finding and the established role for endocytosis in mediating IGFBP actions in other cell types, we have explored the potential role of candidate cell surface receptors. Moreover, we have examined the role of key IGFBP structural motifs, by comparing responses to three members of the IGFBP family (IGFBP-3, IGFBP-4 and IGFBP-5) which display overlapping variations in primary structure and glycosylation status. Coating of microspheres (FluoSpheres®, sulfate modified polystyrene filled with a fluorophore) was conducted at 37 °C for 1 h using 20 μg/mL of test protein, followed by extensive washing. Binding of proteins was confirmed using a microBCA assay. The negative control consisted of microspheres treated with 0.1% bovine serum albumin (BSA), and all test samples were post-treated with BSA in an effort to coat any remaining free protein binding sites, which might otherwise encourage non-specific interactions with the cell surface. Serum-starved cultures of ARPE-19 cells were incubated with microspheres for 24 h, using a ratio of approximately 100 microspheres per cell. Uptake of microspheres was quantified using a fluorometer and was confirmed visually by confocal fluorescence microscopy. The ARPE-19 cells displayed little affinity for BSA-treated microspheres, but avidly ingested large quantities of those pre-treated with Vn (ANOVA; p < 0.001). Strong responses were also observed towards recombinant formulations of non-glycosylated IGFBP-3, glycosylated IGFBP-3 and glycosylated IGFBP-5 (all p < 0.001), while glycosylated IGFBP-4 induced a relatively minor response (p < 0.05). The response to IGFBP-3 was unaffected in the presence of excess soluble IGFBP-3, IGF-I or Vn. Likewise, soluble IGFBP-3 did not induce uptake of BSA-treated microspheres. Antibodies to either the transferrin receptor or type 1 IGF-receptor displayed slight inhibitory effects on responses to IGFBPs and Vn. Heparin abolished responses to Vn, IGFBP-5 and non-glycosylated IGFBP-3, but only partially inhibited the response to glycosylated IGFBP-3. Our results demonstrate for the first time IGFBP-mediated endocytosis in ARPE-19 cells and suggest roles for the IGFBP-heparin-binding domain and glycosylation status. These findings have important implications for understanding the mechanisms of IGFBP actions on the RPE, and in particular suggest a role for IGFBP-endocytosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of animal sera for the culture of therapeutically important cells impedes the clinical use of the cells. We sought to characterize the functional response of human mesenchymal stem cells (hMSCs) to specific proteins known to exist in bone tissue with a view to eliminating the requirement of animal sera. Insulin-like growth factor-I (IGF-I), via IGF binding protein-3 or -5 (IGFBP-3 or -5) and transforming growth factor-beta 1 (TGF-beta(1)) are known to associate with the extracellular matrix (ECM) protein vitronectin (VN) and elicit functional responses in a range of cell types in vitro. We found that specific combinations of VN, IGFBP-3 or -5, and IGF-I or TGF-beta(1) could stimulate initial functional responses in hMSCs and that IGF-I or TGF-beta(1) induced hMSC aggregation, but VN concentration modulated this effect. We speculated that the aggregation effect may be due to endogenous protease activity, although we found that neither IGF-I nor TGF-beta(1) affected the functional expression of matrix metalloprotease-2 or -9, two common proteases expressed by hMSCs. In summary, combinations of the ECM and growth factors described herein may form the basis of defined cell culture media supplements, although the effect of endogenous protease expression on the function of such proteins requires investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The behaviour of cells cultured within three-dimensional (3D) structures rather than onto two-dimensional (2D) culture plastic more closely reflects their in vivo responses. Consequently, 3D culture systems are becoming crucial scientific tools in cancer cell research. We used a novel 3D culture concept to assess cell-matrix interactions implicated in carcinogenesis: a synthetic hydrogel matrix equipped with key biomimetic features, namely incorporated cell integrin-binding motifs (e.g. RGD peptides) and the ability of being degraded by cell-secreted proteases (e.g. matrix metalloproteases). As a cell model, we chose epithelial ovarian cancer, an aggressive disease typically diagnosed at an advanced stage when chemoresistance occurs. Both cell lines used (OV-MZ-6, SKOV-3) proliferated similarly in 2D, but not in 3D. Spheroid formation was observed exclusively in 3D when cells were embedded within hydrogels. By exploiting the design flexibility of the hydrogel characteristics, we showed that proliferation in 3D was dependent on cell-integrin engagement and the ability of cells to proteolytically remodel their extracellular microenvironment. Higher survival rates after exposure to the anti-cancer drug paclitaxel were observed in cell spheroids grown in hydrogels (40-60%) compared to cell monolayers in 2D (20%). Thus, 2D evaluation of chemosensitivity may not reflect pathophysiological events seen in patients. Because of the design flexibility of their characteristics and their stability in long-term cultures (28 days), these biomimetic hydrogels represent alternative culture systems for the increasing demand in cancer research for more versatile, physiologically relevant and reproducible 3D matrices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study MCF-7 breast cancer cell movement in a transwell apparatus. Various experimental conditions lead to a variety of monotone and nonmonotone responses which are difficult to interpret. We anticipate that the experimental results could be caused by cell-to-cell adhesion or volume exclusion. Without any modeling, it is impossible to understand the relative roles played by these two mechanisms. A lattice-based exclusion process random-walk model incorporating agent-to-agent adhesion is applied to the experimental system. Our combined experimental and modeling approach shows that a low value of cell-to-cell adhesion strength provides the best explanation of the experimental data suggesting that volume exclusion plays a more important role than cell-to-cell adhesion. This combined experimental and modeling study gives insight into the cell-level details and design of transwell assays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous studies have reported links between insulin-like growth factors (IGFs) and the extra-cellular matrix protein vitronectin (VN). We ourselves have reported that IGF-I binds to VN via IGF-binding proteins (IGFBPs) to stimulate HaCaT and MCF-7 cell migration. Here, we detail the functional evaluation of IGFBP-1, -2, -3, -4 and -6 in the presence and absence of IGF-I and VN. The data presented here, combined with our prior data on IGFBP-5, suggest that IGFBP-3, -4 and -5 are the most effective at stimulating cell migration in combination with IGF-I and VN. In addition, we demonstrate that different regions within IGFBP-3 and -4 are critical for complex formation. Furthermore, we examine whether multi-protein complexes of IGF-I and IGFBPs associated with fibronectin and collagen IV are also able to enhance functional biological responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have demonstrated that IGF-I associates with VN through IGF-binding proteins (IGFBP) which in turn modulate IGF-stimulated biological functions such as cell proliferation, attachment and migration. Since IGFs play important roles in transformation and progression of breast tumours, we aimed to describe the effects of IGF-I:IGFBP:VN complexes on breast cell function and to dissect mechanisms underlying these responses. In this study we demonstrate that substrate-bound IGF-I:IGFBP:VN complexes are potent stimulators of MCF-7 breast cell survival, which is mediated by a transient activation of ERK/MAPK and sustained activation of PI3-K/AKT pathways. Furthermore, use of pharmacological inhibitors of the MAPK and PI3-K pathways confirms that both pathways are involved in IGF-I:IGFBP:VN complex-mediated increased cell survival. Microarray analysis of cells stimulated to migrate in response to IGF-I:IGFBP:VN complexes identified differential expression of genes with previously reported roles in migration, invasion and survival (Ephrin-B2, Sharp-2, Tissue-factor, Stratifin, PAI-1, IRS-1). These changes were not detected when the IGF-I analogue (\[L24]\[A31]-IGF-I), which fails to bind to the IGF-I receptor, was substituted; confirming the IGF-I-dependent differential expression of genes associated with enhanced cell migration. Taken together, these studies have established that IGF-I:IGFBP:VN complexes enhance breast cell migration and survival, processes central to facilitating metastasis. This study highlights the interdependence of ECM and growth factor interactions in biological functions critical for metastasis and identifies potential novel therapeutic targets directed at preventing breast cancer progression.