246 resultados para Nucleotide sequence


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: Colorectal cancer patients diagnosed with stage I or II disease are not routinely offered adjuvant chemotherapy following resection of the primary tumor. However, up to 10% of stage I and 30% of stage II patients relapse within 5 years of surgery from recurrent or metastatic disease. The aim of this study was to determine if tumor-associated markers could detect disseminated malignant cells and so identify a subgroup of patients with early-stage colorectal cancer that were at risk of relapse. Experimental Design: We recruited consecutive patients undergoing curative resection for early-stage colorectal cancer. Immunobead reverse transcription-PCR of five tumor-associated markers (carcinoembryonic antigen, laminin γ2, ephrin B4, matrilysin, and cytokeratin 20) was used to detect the presence of colon tumor cells in peripheral blood and within the peritoneal cavity of colon cancer patients perioperatively. Clinicopathologic variables were tested for their effect on survival outcomes in univariate analyses using the Kaplan-Meier method. A multivariate Cox proportional hazards regression analysis was done to determine whether detection of tumor cells was an independent prognostic marker for disease relapse. Results: Overall, 41 of 125 (32.8%) early-stage patients were positive for disseminated tumor cells. Patients who were marker positive for disseminated cells in post-resection lavage samples showed a significantly poorer prognosis (hazard ratio, 6.2; 95% confidence interval, 1.9-19.6; P = 0.002), and this was independent of other risk factors. Conclusion: The markers used in this study identified a subgroup of early-stage patients at increased risk of relapse post-resection for primary colorectal cancer. This method may be considered as a new diagnostic tool to improve the staging and management of colorectal cancer. © 2006 American Association for Cancer Research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bananas are one of the world's most important food crops, providing sustenance and income for millions of people in developing countries and supporting large export industries. Viruses are considered major constraints to banana production, germplasm multiplication and exchange, and to genetic improvement of banana through traditional breeding. In Africa, the two most important virus diseases are bunchy top, caused by Banana bunchy top virus (BBTV), and banana streak disease, caused by Banana streak virus (BSV). BBTV is a serious production constraint in a number of countries within/bordering East Africa, such as Burundi, Democratic Republic of Congo, Malawi, Mozambique, Rwanda and Zambia, but is not present in Kenya, Tanzania and Uganda. Additionally, epidemics of banana streak disease are occurring in Kenya and Uganda. The rapidly growing tissue culture (TC) industry within East Africa, aiming to provide planting material to banana farmers, has stimulated discussion about the need for virus indexing to certify planting material as virus-free. Diagnostic methods for BBTV and BSV have been reported and, for BBTV, PCR-based assays are reliable and relatively straightforward. However for BSV, high levels of serological and genetic variability and the presence of endogenous virus sequences within the banana genome complicate diagnosis. Uganda has been shown to contain the greatest diversity in BSV isolates found anywhere in the world. A broad-spectrum diagnostic test for BSV detection, which can discriminate between endogenous and episomal BSV sequences, is a priority. This PhD project aimed to establish diagnostic methods for banana viruses, with a particular focus on the development of novel methods for BSV detection, and to use these diagnostic methods for the detection and characterisation of banana viruses in East Africa. A novel rolling-circle amplification (RCA) method was developed for the detection of BSV. Using samples of Banana streak MY virus (BSMYV) and Banana streak OL virus (BSOLV) from Australia, this method was shown to distinguish between endogenous and episomal BSV sequences in banana plants. The RCA assay was used to screen a collection of 56 banana samples from south-west Uganda for BSV. RCA detected at least five distinct BSV isolates in these samples, including BSOLV and Banana streak GF virus (BSGFV) as well as three BSV isolates (Banana streak Uganda-I, -L and -M virus) for which only partial sequences had been previously reported. These latter three BSV had only been detected using immuno-capture (IC)-PCR and thus were possible endogenous sequences. In addition to its ability to detect BSV, the RCA protocol was also demonstrated to detect other viruses within the family Caulimoviridae, including Sugar cane bacilliform virus, and Cauliflower mosaic virus. Using the novel RCA method, three distinct BSV isolates from both Kenya and Uganda were identified and characterised. The complete genome of these isolates was sequenced and annotated. All six isolates were shown to have a characteristic badnavirus genome organisation with three open reading frames (ORFs) and the large polyprotein encoded by ORF 3 was shown to contain conserved amino acid motifs for movement, aspartic protease, reverse transcriptase and ribonuclease H activities. As well, several sequences important for expression and replication of the virus genome were identified including the conserved tRNAmet primer binding site present in the intergenic region of all badnaviruses. Based on the International Committee on Taxonomy of Viruses (ICTV) guidelines for species demarcation in the genus Badnavirus, these six isolates were proposed as distinct species, and named Banana streak UA virus (BSUAV), Banana streak UI virus (BSUIV), Banana streak UL virus (BSULV), Banana streak UM virus (BSUMV), Banana streak CA virus (BSCAV) and Banana streak IM virus (BSIMV). Using PCR with species-specific primers designed to each isolate, a genotypically diverse collection of 12 virus-free banana cultivars were tested for the presence of endogenous sequences. For five of the BSV no amplification was observed in any cultivar tested, while for BSIMV, four positive samples were identified in cultivars with a B-genome component. During field visits to Kenya, Tanzania and Uganda, 143 samples were collected and assayed for BSV. PCR using nine sets of species-specific primers, and RCA, were compared for BSV detection. For five BSV species with no known endogenous counterpart (namely BSCAV, BSUAV, BSUIV, BSULV and BSUMV), PCR was used to detect 30 infections from the 143 samples. Using RCA, 96.4% of these samples were considered positive, with one additional sample detected using RCA which was not positive using PCR. For these five BSV, PCR and RCA were both useful for identifying infected samples, irrespective of the host cultivar genotype (Musa A- or B-genome components). For four additional BSV with known endogenous counterparts in the M. balbisiana genome (BSOLV, BSGFV, BSMYV and BSIMV), PCR was shown to detect 75 infections from the 143 samples. In 30 samples from cultivars with an A-only genome component there was 96.3% agreement between PCR positive samples and detection using RCA, again demonstrating either PCR or RCA are suitable methods for detection. However, in 45 samples from cultivars with some B-genome component, the level of agreement between PCR positive samples and RCA positive samples was 70.5%. This suggests that, in cultivars with some B-genome component, many infections were detected using PCR which were the result of amplification of endogenous sequences. In these latter cases, RCA or another method which discriminates between endogenous and episomal sequences, such as immuno-capture PCR, is needed to diagnose episomal BSV infection. Field visits were made to Malawi and Rwanda to collect local isolates of BBTV for validation of a PCR-based diagnostic assay. The presence of BBTV in samples of bananas with bunchy top disease was confirmed in 28 out of 39 samples from Malawi and all nine samples collected in Rwanda, using PCR and RCA. For three isolates, one from Malawi and two from Rwanda, the complete nucleotide sequences were determined and shown to have a similar genome organisation to previously published BBTV isolates. The two isolates from Rwanda had at least 98.1% nucleotide sequence identity between each of the six DNA components, while the similarity between isolates from Rwanda and Malawi was between 96.2% and 99.4% depending on the DNA component. At the amino acid level, similarities in the putative proteins encoded by DNA-R, -S, -M, - C and -N were found to range between 98.8% to 100%. In a phylogenetic analysis, the three East African isolates clustered together within the South Pacific subgroup of BBTV isolates. Nucleotide sequence comparison to isolates of BBTV from outside Africa identified India as the possible origin of East African isolates of BBTV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hepatitis C virus (HCV ) core (C) protein is thought to bind to viral RNA before it undergoes oligomerization leading to RNA encapsidation. Details of these events are so far unknown. The 5ʹ-terminal C protein coding sequence that includes an adenine (A)-rich tract is a part of an internal ribosome entry site(IRES). This nucleotide sequence but not the corresponding protein sequence is needed for proper initiation of translation of viral RNA by an IRES-dependent mechanism. In this study, we examined the importance of this sequence for the ability of the C protein to bind to viral RNA. Serially truncated C proteins with deletions from 10 up to 45 N-terminal amino acids were expressed in Escherichia coli, purified and tested for binding to viral RNA by a gel shift assay. The results showed that truncation of the C protein from its N-terminus by more than 10 amino acids abolished almost completely its expression in E. coli. The latter could be restored by adding a tag to the N-terminus of the protein. The tagged proteins truncated by 15 or more amino acids showed an anomalous migration in SDS-PAGE. Truncation by more than 20 amino acids resulted in a complete loss of ability of tagged C protein to bind to viral RNA. These results provide clues to the early events in the C protein - RNA interactions leading to C protein oligomerization, RNA encapsidation and virion assembly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genetic variation at allozyme and mitochondrial DNA loci was investigated in the Australian lungfish, Neoceratodus forsteri Krefft 1870. Tissue samples for genetic analysis were taken non-lethally from 278 individuals representing two spatially distinct endemic populations (Mary and Burnett rivers), as well as one population thought to be derived from an anthropogenic translocation in the 1890's (Brisbane river). Two of 24 allozyme loci resolved from muscle tissue were polymorphic. Mitochondrial DNA nucleotide sequence diversity estimated across 2,235 base pairs in each of 40 individuals ranged between 0.000423 and 0.001470 per river. Low genetic variation at allozyme and mitochondrial loci could be attributed to population bottlenecks, possibly induced by Pleistocene aridity. Limited genetic differentiation was detected among rivers using nuclear and mitochondrial markers suggesting that admixture may have occurred between the endemic Mary and Burnett populations during periods of low sea level when the drainages may have converged before reaching the ocean. Genetic data was consistent with the explanation that lungfish were introduced to the Brisbane river from the Mary river. Further research using more variable genetic loci is needed before the conservation status of populations can be determined, particularly as anthropogenic demands on lungfish habitat are increasing. In the interim we recommend a management strategy aimed at conserving existing genetic variation within and between rivers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Beak and feather disease virus (BFDV), the causative agent of psittacine beak and feather disease (PBFD) infects psittaciformes worldwide. We provide an annotated sequence record of three full-length unique genomes of BFDV isolates from budgerigars (Melopsittacus undulatus) from a breeding farm in South Africa. The isolates share >99% nucleotide sequence identity with each other and ~96% nucleotide sequence identity to two recent isolates (Melopsittacus undulatus) from Thailand but only between 91. 6 and 86. 6% identity with all other full-length BFDV sequences. Maximum-likelihood analysis and recombination analysis suggest that the South African budgerigar BFDV isolates are unique to budgerigars, are non-recombinant in origin, and represent a new genotype of BFDV. © 2010 Springer-Verlag.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The African streak viruses (AfSVs) are a diverse group of mastrevirus species (family Geminiviridae) that infect a wide variety of annual and perennial grass species across the African continent and its nearby Indian Ocean islands. Six AfSV species (of which maize streak virus is the best known) have been described. Here we report the full genome sequences of eight isolates of a seventh AfSV species: Urochloa streak virus (USV), sampled from various locations in Nigeria. Despite there being good evidence of recombination in many other AfSV species, we found no convincing evidence that any of the USV sequences were either inter- or intra-species recombinants. The USV isolates, all of which appear to be variants of the same strain (their genome sequences are all more than 98% identical), share less than 69% nucleotide sequence identity with other currently described AfSV species. © 2008 Springer-Verlag.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carrion-breeding Sarcophagidae (Diptera) can be used to estimate the post-mortem interval (PMI) in forensic cases. Difficulties with accurate morphological identifications at any life stage and a lack of documented thermobiological profiles have limited their current usefulness of these flies. The molecular-based approach of DNA barcoding, which utilises a 648-bp fragment of the mitochondrial cytochrome oxidase subunit I gene, was previously evaluated in a pilot study for the discrimination between 16 Australian sarcophagids. The current study comprehensively evaluated DNA barcoding on a larger taxon set of 588 adult Australian sarcophagids. A total of 39 of the 84 known Australian species were represented by 580 specimens, which includes 92% of potentially forensically important species. A further eight specimens could not be reliably identified, but included as six unidentifable taxa. A neighbour-joining phylogenetic tree was generated and nucleotide sequence divergences were calculated using the Kimura-two-parameter distance model. All species except Sarcophaga (Fergusonimyia) bancroftorum, known for high morphological variability, were resolved as reciprocally monophyletic (99.2% of cases), with most having bootstrap support of 100. Excluding S. bancroftorum, the mean intraspecific and interspecific variation ranged from 0.00-1.12% and 2.81-11.23%, respectively, allowing for species discrimination. DNA barcoding was therefore validated as a suitable method for the molecular identification of the Australian Sarcophagidae, which will aid in the implementation of this fauna in forensic entomology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Prostacyclin synthase (PGIS) metabolizes prostaglandin H(2), into prostacyclin. This study aimed to determine the expression profile of PGIS in nonsmall cell lung cancer (NSCLC) and examine potential mechanisms involved in PGIS regulation. METHODS: PGIS expression was examined in human NSCLC and matched controls by reverse transcriptase polymerase chain reaction (RT-PCR), Western analysis, and immunohistochemistry. A 204-patient NSCLC tissue microarray was stained for PGIS and cyclooxygenase 2 (COX2) expression. Staining intensity was correlated with clinical parameters. Epigenetic mechanisms underpinning PGIS promoter expression were examined using RT-PCR, methylation-specific PCR, and chromatin immunoprecipitation analysis. RESULTS: PGIS expression was reduced/absent in human NSCLC protein samples (P <.0001), but not mRNA relative to matched controls. PGIS tissue expression was higher in squamous cell carcinoma (P =.004) and in male patients (P <.05). No significant correlation of PGIS or COX2 expression with overall patient survival was observed, although COX2 was prognostic for short-term (2-year) survival (P <.001). PGIS mRNA expression was regulated by DNA CpG methylation and histone acetylation in NSCLC cell lines, with chromatin remodeling taking place directly at the PGIS gene. PGIS mRNA expression was increased by both demethylation agents and histone deacetylase inhibitors. Protein levels were unaffected by demethylation agents, whereas PGIS protein stability was negatively affected by histone deacetylase inhibitors. CONCLUSIONS: PGIS protein expression is reduced in NSCLC, and does not correlate with overall patient survival. PGIS expression is regulated through epigenetic mechanisms. Differences in expression patterns between mRNA and protein levels suggest that PGIS expression and protein stability are regulated post-translationally. PGIS protein stability may have an important therapeutic role in NSCLC. © 2011 American Cancer Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose Cancer cells have been shown to be more susceptible to Ran knockdown than normal cells. We now investigate whether Ran is a potential therapeutic target of cancers with frequently found mutations that lead to higher Ras/MEK/ERK [mitogen-activated protein/extracellular signal-regulated kinase (ERK; MEK)] and phosphoinositide 3-kinase (PI3K)/Akt/mTORC1 activities. Experimental Design Apoptosis was measured by flow cytometry [propidium iodide (PI) and Annexin V staining] and MTT assay in cancer cells grown under different conditions after knockdown of Ran. The correlations between Ran expression and patient survival were examined in breast and lung cancers. Results Cancer cells with their PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways inhibited are less susceptible to Ran silencing-induced apoptosis. K-Ras-mutated, c-Met-amplified, and Pten-deleted cancer cells are also more susceptible to Ran silencing-induced apoptosis than their wild-type counterparts and this effect is reduced by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Overexpression of Ran in clinical specimens is significantly associated with poor patient outcome in both breast and lung cancers. This association is dramatically enhanced in cancers with increased c-Met or osteopontin expression, or with oncogenic mutations of K-Ras or PIK3CA, all of which are mutations that potentially correlate with activation of the PI3K/Akt/mTORC1 and/or Ras/MEK/ERK pathways. Silencing Ran also results in dysregulation of nucleocytoplasmic transport of transcription factors and downregulation of Mcl-1 expression, at the transcriptional level, which are reversed by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Conclusion Ran is a potential therapeutic target for treatment of cancers with mutations/changes of expression in protooncogenes that lead to activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways. ©2011 AACR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In plants, silencing of mRNA can be transmitted from cell to cell and also over longer distances from roots to shoots. To investigate the long-distance mechanism, WT and mutant shoots were grafted onto roots silenced for an mRNA. We show that three genes involved in a chromatin silencing pathway, NRPD1a encoding RNA polymerase IVa, RNA-dependent RNA polymerase 2 (RDR2), and DICER-like 3 (DCL3), are required for reception of long-distance mRNA silencing in the shoot. A mutant representing a fourth gene in the pathway, argonaute4 (ago4), was also partially compromised in the reception of silencing. This pathway produces 24-nt siRNAs and resulted in decapped RNA, a known substrate for amplification of dsRNA by RDR6. Activation of silencing in grafted shoots depended on RDR6, but no 24-nt siRNAs were detected in mutant rdr6 shoots, indicating that RDR6 also plays a role in initial signal perception. After amplification of decapped transcripts, DCL4 and DCL2 act hierarchically as they do in antiviral resistance to produce 21- and 22-nt siRNAs, respectively, and these guide mRNA degradation. Several dcl genotypes were also tested for their capacity to transmit the mobile silencing signal from the rootstock. dcl1-8 and a dcl2 dcl3 dcl4 triple mutant are compromised in micro-RNA and siRNA biogenesis, respectively, but were unaffected in signal transmission. © 2007 by The National Academy of Sciences of the USA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RNA polymerase III (Pol III) as well as Pol II (35S) promoters are able to drive hairpin RNA (hpRNA) expression and induce target gene silencing in plants. siRNAs of 21 nt are the predominant species in a 35S Pol II line, whereas 24- and/or 22-nucleotide (nt) siRNAs are produced by a Pol III line. The 35S line accumulated the loop of the hpRNA, in contrast to full-length hpRNA in the Pol III line. These suggest that Pol II and Pol III-transcribed hpRNAs are processed by different pathways. One Pol III transgene produced only 24-nt siRNAs but silenced the target gene efficiently, indicating that the 24-nt siRNAs can direct mRNA degradation; specific cleavage was confirmed by 59 rapid amplification of cDNA ends (RACE). Both Pol II- and Pol III-directed hpRNA transgenes induced cytosine methylation in the target DNA. The extent of methylation is not correlated with the level of 21-nt siRNAs, suggesting that they are not effective inducers of DNA methylation. The promoter of a U6 transgene was significantly methylated, whereas the promoter of the endogenous U6 gene was almost free of cytosine methylation, suggesting that endogenous sequences are more resistant to de novo DNA methylation than are transgene constructs. Published by Cold Spring Harbor Laboratory Press. Copyright © 2008 RNA Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nucleotide sequences of several animal, plant and bacterial genomes are now known, but the functions of many of the proteins that they are predicted to encode remain unclear. RNA interference is a gene-silencing technology that is being used successfully to investigate gene function in several organisms - for example, Caenorhabditis elegans. We discuss here that RNA-induced gene silencing approaches are also likely to be effective for investigating plant gene function in a high-throughput, genome-wide manner.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The P0 protein of poleroviruses and P1 protein of sobemoviruses suppress the plant's RNA silencing machinery. Here we identified a silencing suppressor protein (SSP), P0PE, in the Enamovirus Pea enation mosaic virus-1 (PEMV-1) and showed that it and the P0s of poleroviruses Potato leaf roll virus and Cereal yellow dwarf virus have strong local and systemic SSP activity, while the P1 of Sobemovirus Southern bean mosaic virus supresses systemic silencing. The nuclear localized P0PE has no discernable sequence conservation with known SSPs, but proved to be a strong suppressor of local silencing and a moderate suppressor of systemic silencing. Like the P0s from poleroviruses, P0PE destabilizes AGO1 and this action is mediated by an F-box-like domain. Therefore, despite the lack of any sequence similarity, the poleroviral and enamoviral SSPs have a conserved mode of action upon the RNA silencing machinery. © 2012 Elsevier Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In plant cells, DICER-LIKE4 processes perfectly double-stranded RNA (dsRNA) into short interfering (si) RNAs, and DICER-LIKE1 generates micro (mi) RNAs from primary miRNA transcripts (pri-miRNA) that form fold-back structures of imperfectly dsRNA. Both si and miRNAs direct the endogenous endonuclease, ARGONAUTE1 to cleave complementary target single-stranded RNAs and either small RNA (sRNA)-directed pathway can be harnessed to silence genes in plants. A routine way of inducing and directing RNA silencing by siRNAs is to express self-complementary single-stranded hairpin RNA (hpRNA), in which the duplexed region has the same sequence as part of the target gene's mRNA. Artificial miRNA (amiRNA)-mediated silencing uses an endogenous pri-miRNA, in which the original miRNA/miRNA* sequence has been replaced with a sequence complementary to the new target gene. In this chapter, we describe the plasmid vector systems routinely used by our research group for the generation of either hpRNA-derived siRNAs or amiRNAs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report here that the expression of endogenous microRNAs (miRNAs) can be efficiently silenced in Arabidopsis thaliana (Arabidopsis) using artificial miRNA (amiRNA) technology. We demonstrate that an amiRNA designed to target a mature miRNA directs silencing against all miRNA family members, whereas an amiRNA designed to target the stem-loop region of a miRNA precursor transcript directs silencing against only the individual family member targeted. Furthermore, our results indicate that amiRNAs targeting both the mature miRNA and stem-loop sequence direct RNA silencing through cleavage of the miRNA precursor transcript, which presumably occurs in the nucleus of a plant cell during the initial stages of miRNA biogenesis. This suggests that small RNA (sRNA)-guided RNA cleavage in plants occurs not only in the cytoplasm, but also in the nucleus. Many plant miRNA gene families have been identified via sequencing and bioinformatic analysis, but, to date, only a small tranche of these have been functionally characterized due to a lack of effective forward or reverse genetic tools. Our findings therefore provide a new and powerful reverse-genetic tool for the analysis of miRNA function in plants. © The Author 2010. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPP and IPPE, SIBS, CAS.