32 resultados para Glutamate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Migraine is a brain disorder affecting ∼12% of the Caucasian population. Genes involved in neurological, vascular, and hormonal pathways have all been implicated in predisposing individuals to developing migraine. The migraineur presents with disabling head pain and varying symptoms of nausea, emesis, photophobia, phonophobia, and occasionally visual sensory disturbances. Biochemical and genetic studies have demonstrated dysfunction of neurotransmitters: serotonin, dopamine, and glutamate in migraine susceptibility. Glutamate mediates the transmission of excitatory signals in the mammalian central nervous system that affect normal brain function including cognition, memory and learning. The aim of this study was to investigate polymorphisms in the GRIA2 and GRIA4 genes, which encode subunits of the ionotropic AMPA receptor for association in an Australian Caucasian population. Methods Genotypes for each polymorphism were determined using high resolution melt analysis and the RFLP method. Results Statistical analysis showed no association between migraine and the GRIA2 and GRIA4 polymorphisms investigated. Conclusions Although the results of this study showed no significant association between the tested GRIA gene variants and migraine in our Australian Caucasian population further investigation of other components of the glutamatergic system may help to elucidate if there is a relationship between glutamatergic dysfunction and migraine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L-Amino acid oxidases (LAAOs) are useful catalysts for the deracemisation of racemic amino acid sub-strates when combined with abiotic reductants. The gene nadB encoding the L-aspartate amino acid oxidase from Pseudomonas putida (PpLASPO) has been cloned and expressed in E. coli. The purified PpLASPO enzyme displayed a K M for l-aspartic acid of 2.26 mM and a k cat = 10.6 s −1 , with lower activity also displayed towards L-asparagine, for which pronounced substrate inhibition was also observed. The pH optimum of the enzyme was recorded at pH 7.4. The enzyme was stable for 60 min at up to 40 • C, but rapid losses in activity were observed at 50 • C. A mutational analysis of the enzyme, based on its sequence homology with the LASPO from E. coli of known structure, appeared to confirm roles in substrate binding or catalysis for residues His244, His351, Arg386 and Arg290 and also for Thr259 and Gln242. The high activity of the enzyme, and its promiscuous acceptance of both L-asparagine and L-glutamate as substrates, if with low activity, suggests that PpLASPO may provide a good model enzyme for evolution studies towards AAOs of altered or improved properties in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Extracorporeal membrane oxygenation (ECMO) circuits have been shown to sequester circulating blood compounds such as drugs based on their physicochemical properties. This study aimed to describe the disposition of macro- and micronutrients in simulated ECMO circuits. Methods Following baseline sampling, known quantities of macro- and micronutrients were injected post oxygenator into ex vivo ECMO circuits primed with the fresh human whole blood and maintained under standard physiologic conditions. Serial blood samples were then obtained at 1, 30 and 60 min and at 6, 12 and 24 h after the addition of nutrients, to measure the concentrations of study compounds using validated assays. Results Twenty-one samples were tested for thirty-one nutrient compounds. There were significant reductions (p < 0.05) in circuit concentrations of some amino acids [alanine (10%), arginine (95%), cysteine (14%), glutamine (25%) and isoleucine (7%)], vitamins [A (42%) and E (6%)] and glucose (42%) over 24 h. Significant increases in circuit concentrations (p < 0.05) were observed over time for many amino acids, zinc and vitamin C. There were no significant reductions in total proteins, triglycerides, total cholesterol, selenium, copper, manganese and vitamin D concentrations within the ECMO circuit over a 24-h period. No clear correlation could be established between physicochemical properties and circuit behaviour of tested nutrients. Conclusions Significant alterations in macro- and micronutrient concentrations were observed in this single-dose ex vivo circuit study. Most significantly, there is potential for circuit loss of essential amino acid isoleucine and lipid soluble vitamins (A and E) in the ECMO circuit, and the mechanisms for this need further exploration. While the reductions in glucose concentrations and an increase in other macro- and micronutrient concentrations probably reflect cellular metabolism and breakdown, the decrement in arginine and glutamine concentrations may be attributed to their enzymatic conversion to ornithine and glutamate, respectively. While the results are generally reassuring from a macronutrient perspective, prospective studies in clinical subjects are indicated to further evaluate the influence of ECMO circuit on micronutrient concentrations and clinical outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the key neuron-to-neuron interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. However, the signal transduction mechanisms by which stress mediates its lasting effects on synapse transmission and on memory are not fully understood. A key component of the stress response is the increased secretion of adrenal steroids. Adrenal steroids (e.g., cortisol) bind to genomic mineralocorticoid and glucocorticoid receptors (gMRs and gGRs) in the cytosol. In addition, they may act through membrane receptors (mMRs and mGRs), and signal transduction through these receptors may allow for rapid modulation of synaptic transmission as well as modulation of membrane ion currents. mMRs increase synaptic and neuronal excitability; mechanisms include the facilitation of glutamate release through extracellular signal-regulated kinase signal transduction. In contrast, mGRs decrease synaptic and neuronal excitability by reducing calcium currents through N-methyl-D-aspartate receptors and voltage-gated calcium channels by way of protein kinase A- and G protein-dependent mechanisms. This body of functional data complements anatomical evidence localizing GRs to the postsynaptic membrane. Finally, accumulating data also suggest the possibility that mMRs and mGRs may show an inverted U-shaped dose response, whereby glutamatergic synaptic transmission is increased by low doses of corticosterone acting at mMRs and decreased by higher doses acting at mGRs. Thus, synaptic transmission is regulated by mMRs and mGRs, and part of the stress signaling response is a direct and bidirectional modulation of the synapse itself by adrenal steroids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic difficulties arising from mild brain injury (TBI) are difficult to predict because the processes underlying changes after TBI are poorly understood. In mild brain injury the extent of neuropsychiatric and cognitive symptoms correspond poorly to overt tissue loss (Barth 1983; Liu 2010). Cellular, immune and hormonal cascades occurring after injury and continuing during the healing process may impact uninjured brain regions sensitive to the effects of physiological and emotional stress, which receive projections from the injury site. Changes in these most basic properties due to injury or disease have profound implications for virtually every aspect of brain function through disruption of neurotransmitter, neuroendocrine and metabolic systems. In order to screen for changes in transmitter and metabolic activity, in this study we developed Single voxel proton Magnetic Resonance Spectroscopy (1H-MRS) for use in both injured and control animals. We first evaluated if 1H-MRS could be used to evaluate in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus in both control and injured animals after controlled cortical impact injury to the rat prefrontal cortex. We found that metabolite measurements for Myo-Inositol, Choline, creatine, Glutamate+Glutamine, and N-acetyl-acetate are attainable in deep brain structures in vivo in injured and controls rats. We next seek to evaluate longitudinally, in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus during the first month after controlled cortical impact injury to the rat prefrontal cortex. These ongoing studies will provide data on the changes in transmitters and metabolites over time in injured and non-injured subjects. These studies address some of the fundamental questions about how mild brain injury has such diverse effects on overall brain health and function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Different types of hallucinations are symptomatic of different conditions. Schizotypal hallucinations are unique in that they follow existing delusional narrative patterns: they are often bizarre, they are generally multimodal, and they are particularly vivid (the experience of a newsreader abusing you personally over the TV is both visual and aural. Patients who feel and hear silicone chips under their skin suffer from haptic hallucinations as well as aural ones, etc.) Although there are a number of hypotheses for hallucinations, few cogently grapple the sheer bizarreness of the ones experienced in schizotypal psychosis. Methods A review-based hypothesis, traversing theory from the molecular level to phenomenological expression as a distinct and recognizable symptomatology. Conclusion Hallucinations appear to be caused by a two-fold dysfunction in the mesofrontal dopamine pathway, which is considered here to mediate attention of different types: in the anterior medial frontal lobe, the receptors (largely D1 type) mediate declarative awareness, whereas the receptors in the striatum (largely D2 type) mediate latent awareness of known schemata. In healthy perception, most of the perceptual load is performed by the latter: by the top-down predictive and mimetic engine, with the bottom-up mechanism being used as a secondary tool to bring conscious deliberation to stimuli that fails to match up against expectations. In schizophrenia, the predictive mode is over-stimulated, while the bottom-up feedback mechanism atrophies. The dysfunctional distribution pattern effectively confines dopamine activity to the striatum, thereby stimulating the structural components of thought and behaviour: well-learned routines, narrative structures, lexica, grammar, schemata, archetypes, and other procedural resources. Meanwhile, the loss of activity in the frontal complex reduces the capacity for declarative awareness and for processing anything that fails to meet expectations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major diabetes autoantigen, glutamic acid decarboxylase (GAD65), contains a region of sequence similarity, including six identical residues PEVKEK, to the P2C protein of coxsackie B virus, suggesting that cross-reactivity between coxsackie B virus and GAD65 can initiate autoimmune diabetes. We used the human islet cell mAbs MICA3 and MICA4 to identify the Ab epitopes of GAD65 by screening phage-displayed random peptide libraries. The identified peptide sequences could be mapped to a homology model of the pyridoxal phosphate (PLP) binding domain of GAD65. For MICA3, a surface loop containing the sequence PEVKEK and two adjacent exposed helixes were identified in the PLP binding domain as well as a region of the C terminus of GAD65 that has previously been identified as critical for MICA3 binding. To confirm that the loop containing tile PEVKEK sequence contributes to the MICA3 epitope, this loop was deleted by mutagenesis. This reduced binding of MICA3 by 70%. Peptide sequences selected using MICA4 were rich in basic or hydroxyl-containing amino acids, and the surface of the GAD65 PLP-binding domain surrounding Lys358, which is known to be critical for MICA4 binding, was likewise rich in these amino acids. Also, the two phage most reactive width MICA4 encoded the motif VALxG, and the reverse of this sequence, LAV, was located in this same region. Thus, we have defined the MICA3 and MICA4 epitopes on GAD65 using the combination of phage display, molecular modeling, and mutagenesis and have provided compelling evidence for the involvement of the PEVKEK loop in the MICA3 epitope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biopanning of phage-displayed random peptide libraries is a powerful technique for identifying peptides that mimic epitopes (mimotopes) for monoclonal antibodies (mAbs). However, peptides derived using polyclonal antisera may represent epitopes for a diverse range of antibodies. Hence following screening of phage libraries with polyclonal antisera, including autoimmune disease sera, a procedure is required to distinguish relevant from irrelevant phagotopes. We therefore applied the multiple sequence alignment algorithm PILEUP together with a matrix for scoring amino acid substitutions based on physicochemical properties to generate guide trees depicting relatedness of selected peptides. A random heptapeptide library was biopanned nine times using no selecting antibodies, immunoglobulin G (IgG) from sera of subjects with autoimmune diseases (primary biliary cirrhosis (PBC) and type 1 diabetes) and three murine ascites fluids that contained mAbs to overlapping epitope(s) on the Ross River Virus envelope protein 2. Peptides randomly sampled from the library were distributed throughout the guide tree of the total set of peptides whilst many of the peptides derived in the absence of selecting antibody aligned to a single cluster. Moreover peptides selected by different sources of IgG aligned to separate clusters, each with a different amino acid motif. These alignments were validated by testing all of the 53 phagotopes derived using IgG from PBC sera for reactivity by capture ELISA with antibodies affinity purified on the E2 subunit of the pyruvate dehydrogenase complex (PDC-E2), the major autoantigen in PBC: only those phagotopes that aligned to PBC-associated clusters were reactive. Hence the multiple sequence alignment procedure discriminates relevant from irrelevant phagotopes and thus a major difficulty with biopanning phage-displayed random peptide libraries with polyclonal antibodies is surmounted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrospun nanofiber meshes have emerged as a new generation of scaffold membranes possessing a number of features suitable for tissue regeneration. One of these features is the flexibility to modify their structure and composition to orchestrate specific cellular responses. In this study, we investigated the effects of nanofiber orientation and surface functionalization on human mesenchymal stem cell (hMSC) migration and osteogenic differentiation. We used an in vitro model to examine hMSC migration into a cell-free zone on nanofiber meshes and mitomycin C treatment to assess the contribution of proliferation to the observed migration. Poly (ɛ-caprolactone) meshes with oriented topography were created by electrospinning aligned nanofibers on a rotating mandrel, while randomly oriented controls were collected on a stationary collector. Both aligned and random meshes were coated with a triple-helical, type I collagen-mimetic peptide, containing the glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) motif. Our results indicate that nanofiber GFOGER peptide functionalization and orientation modulate cellular behavior, individually, and in combination. GFOGER significantly enhanced the migration, proliferation, and osteogenic differentiation of hMSCs on nanofiber meshes. Aligned nanofiber meshes displayed increased cell migration along the direction of fiber orientation compared to random meshes; however, fiber alignment did not influence osteogenic differentiation. Compared to each other, GFOGER coating resulted in a higher proliferation-driven cell migration, whereas fiber orientation appeared to generate a larger direct migratory effect. This study demonstrates that peptide surface modification and topographical cues associated with fiber alignment can be used to direct cellular behavior on nanofiber mesh scaffolds, which may be exploited for tissue regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is strong evidence to suggest that the combination of alcohol and chronic repetitive stress leads to long-lasting effects on brain function, specifically areas associated with stress, motivation and decision-making such as the amygdala, nucleus accumbens and prefrontal cortex. Alcohol and stress together facilitate the imprinting of long-lasting memories. The molecular mechanisms and circuits involved are being studied but are not fully understood. Current evidence suggests that corticosterone (animals) or cortisol (humans), in addition to direct transcriptional effects on the genome, can directly regulate pre- and postsynaptic synaptic transmission through membrane bound glucocorticoid receptors (GR). Indeed, corticosterone-sensitive synaptic receptors may be critical sites for stress regulation of synaptic responses. Direct modulation of synaptic transmission by corticosterone may contribute to the regulation of synaptic plasticity and memory during stress (Johnson et al., 2005; Prager et al., 2010). Specifically, previous data has shown that long term alcohol (1) increases the expression of NR2Bcontaining NMDA receptors at glutamate synapses, (2) changes receptor density, and (3) changes morphology of dendritic spines (Prendergast and Mulholland; 2012). During alcohol withdrawal these changes are associated with increased glucocorticoid signalling and increased neuronal excitability. It has therefore been proposed that these synapse changes lead to the anxiety and alcohol craving associated with withdrawal (Prendergast and Mulholland; 2012). My lab is targeting this receptor system and the amygdala in order to understand the effect of combining alcohol and stress on these pathways. Lastly, we are testing GR specific compounds as potential new medications to promote the development of resilience to developing addiction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The nitric oxide synthase 1 adaptor protein gene (NOS1AP) has previously been recognised as a schizophrenia susceptibility gene due to its role in glutamate neurotransmission. The gene is believed to inhibit nitric oxide (NO) production activated by the N-methyl-d-aspartate (NMDA) receptor and reduced NO levels have been observed in schizophrenia patients. However, association studies investigating NOS1AP and schizophrenia have produced inconsistent results, most likely because schizophrenia is a clinically heterogeneous disorder. This study aims to investigate the association between NOS1AP variants and defined depression phenotypes of schizophrenia. Methods Nine NOS1AP SNPs, rs1415259, rs1415263, rs1858232, rs386231, rs4531275, rs4656355, rs4657178, rs6683968 and rs6704393 were genotyped in 235 schizophrenia subjects screened for various phenotypes of depression. Result One NOS1AP SNP (rs1858232) was associated with the broad diagnosis of schizophrenia and eight SNPs were associated with depression related phenotypes within schizophrenia. The rs1415259 SNP showed strong association with sleep dysregulation phenotypes of depression. Conclusion Results suggest that NOS1AP variants are associated with various forms of depression in schizophrenia and are more prevalent in males. Limitation Schizophrenia is a clinically heterogeneous disease that can vary greatly between different ethnic and geographic populations so our observations should be viewed with caution until they are independently replicated, particularly in larger patient cohorts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Dystrobrevin binding protein 1 (DTNBP1) is a schizophrenia susceptibility gene involved with neurotransmission regulation (especially dopamine and glutamate) and neurodevelopment. The gene is known to be associated with cognitive deficit phenotypes within schizophrenia. In our previous studies, DTNBP1 was found associated not only with schizophrenia but with other psychiatric disorders including psychotic depression, post-traumatic stress disorder, nicotine dependence and opiate dependence. These findings suggest that DNTBP1 may be involved in pathways that lead to multiple psychiatric phenotypes. In this study, we explored the association between DTNBP1 SNPs (single nucleotide polymorphisms) and multiple psychiatric phenotypes included in the Diagnostic Interview of Psychosis (DIP). METHODS: Five DTNBP1 SNPs, rs17470454, rs1997679, rs4236167, rs9370822 and rs9370823, were genotyped in 235 schizophrenia subjects screened for various phenotypes in the domains of depression, mania, hallucinations, delusions, subjective thought disorder, behaviour and affect, and speech disorder. SNP-phenotype association was determined with ANOVA under general, dominant/recessive and over-dominance models. RESULTS: Post hoc tests determined that SNP rs1997679 was associated with visual hallucination; SNP rs4236167 was associated with general auditory hallucination as well as specific features including non-verbal, abusive and third-person form auditory hallucinations; and SNP rs9370822 was associated with visual and olfactory hallucinations. SNPs that survived correction for multiple testing were rs4236167 for third-person and abusive form auditory hallucinations; and rs9370822 for olfactory hallucinations. CONCLUSION: These data suggest that DTNBP1 is likely to play a role in development of auditory related, visual and olfactory hallucinations which is consistent with evidence of DTNBP1 activity in the auditory processing regions, in visual processing and in the regulation of glutamate and dopamine activity

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10−8), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ~2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Migraine is a common neurological disorder with a genetically complex background. This paper describes a meta-analysis of genome-wide association (GWA) studies on migraine, performed by the Dutch-Icelandic migraine genetics (DICE) consortium, which brings together six population-based European migraine cohorts with a total sample size of 10,980 individuals (2446 cases and 8534 controls). A total of 32 SNPs showed marginal evidence for association at a P-value<10(-5). The best result was obtained for SNP rs9908234, which had a P-value of 8.00 x 10(-8). This top SNP is located in the nerve growth factor receptor (NGFR) gene. However, this SNP did not replicate in three cohorts from the Netherlands and Australia. Of the other 31 SNPs, 18 SNPs were tested in two replication cohorts, but none replicated. In addition, we explored previously identified candidate genes in the meta-analysis data set. This revealed a modest gene-based significant association between migraine and the metadherin (MTDH) gene, previously identified in the first clinic-based GWA study (GWAS) for migraine (Bonferroni-corrected gene-based P-value=0.026). This finding is consistent with the involvement of the glutamate pathway in migraine. Additional research is necessary to further confirm the involvement of glutamate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Migraine is a common episodic neurological disorder, typically presenting with recurrent attacks of severe headache and autonomic dysfunction. Apart from rare monogenic subtypes, no genetic or molecular markers for migraine have been convincingly established. We identified the minor allele of rs1835740 on chromosome 8q22.1 to be associated with migraine (P = 5.38 x 10(-)(9), odds ratio = 1.23, 95% CI 1.150-1.324) in a genome-wide association study of 2,731 migraine cases ascertained from three European headache clinics and 10,747 population-matched controls. The association was replicated in 3,202 cases and 40,062 controls for an overall meta-analysis P value of 1.69 x 10(-)(1)(1) (odds ratio = 1.18, 95% CI 1.127-1.244). rs1835740 is located between MTDH (astrocyte elevated gene 1, also known as AEG-1) and PGCP (encoding plasma glutamate carboxypeptidase). In an expression quantitative trait study in lymphoblastoid cell lines, transcript levels of the MTDH were found to have a significant correlation to rs1835740 (P = 3.96 x 10(-)(5), permuted threshold for genome-wide significance 7.7 x 10(-)(5). To our knowledge, our data establish rs1835740 as the first genetic risk factor for migraine.