2 resultados para MARINE ECOSYSTEM

em Memorial University Research Repository


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through bioturbation, the macrofauna mediate chemical, physical and biological processes in marine benthic ecosystems. Because of the importance of bioturbation as ecosystem mediator, various studies have been conducted on bioturbation intensity and depth, and the relation of bioturbation processes to environmental condition and ecosystem state. This thesis builds on those previous studies, using a standard field and analytical protocol and by expanding the geographical scale to three climatic regions along Canada’s East Coast and Arctic margins, the Arctic Archipelago, the coastal Subarctic (Labrador Fjords), and the temperate continental climate zone (Gulf of Maine and adjacent Scotian shelf/slope). This Ph.D. study provides a comprehensive assessment of environmental influences on bioturbation along gradients in latitude and ocean depth. Bioturbation intensity, mixing depth, and bioturbation structures were studied in relation to the quantity and quality of potential food sources (organic matter) and substrate characteristics to gain an understanding of the environmental controls on bioturbation in these regions. The three main research chapters of this thesis are divided based on the contrasting climatic and geographical regions studied. The analytical approach included seabed sampling with a boxcorer, describing the sedimentary fabric and bioturbation structures by X-radiography, estimating bioturbation intensity and depth applying a biodiffusion model to particle tracer profiles of ²¹⁰Pbₓs, ²²⁸Thₓs, ²³⁴Thₓs, and chlorophyll-a, and analyzing benthic organic matter and substrate characteristics. Strong regional and cross-climatic relations of bioturbation processes with combinations of environmental factors were observed. In particular, bioturbation depth and the vertical extent of bioturbation structures responded to the environmental patterns observed and, therefore, represented potentially applicable predictors of environmental conditions and ecosystem state. The results of this Ph.D. study may be further extended to other geographical regions with similar environmental characteristics to predict the effects of benthic habitat alterations through environmental stresses on a global scale. Integrated with biological data produced by fellow CHONe scientists the presented data may provide valuable information about functional roles of macrofaunal species and community traits in marine benthic ecosystems along Canada’s extensive East Coast and Arctic margins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coral reefs face unprecedented threats throughout most of their range. Poorly planned coastal development has contributed increased nutrients and sewage contamination to coastal waters, smothering some corals and contributing to overgrowth by macroalgae. My approach to assessing the degree to which coral reef ecosystems have been influenced by terrestrial and anthropogenic organic carbon inputs is through the use of carbon (C) and nitrogen (N) stable isotopes and lipid biomarkers in a marine protected area, the Coral Reef System of Veracruz: Parque Nacional Sistema Arrecifal Veracruzano (PNSAV) in the southwest Gulf of Mexico. Firstly, I used a C and N stable isotope mixing model and a calculated fatty acid (FA) retention factor to reveal the primary producer sources that fuel the coral reef food web. Secondly, I used lipid classes, FA and sterol biomarkers to determine production of terrestrial and marine biogenic material of nutritional quality to pelagic and benthic organisms. Finally, I used coprostanol to determine pollutant loading from sewage in the suspended particulate matter. Results indicate that phytoplankton is the major source of essential metabolite FA for marine fish and that dietary energy from terrestrial sources such as mangroves are transferred to juvenile fish, while seagrass non-essential FA are transferred to the entire food web mainly in the rainy season. Sea urchins may be the main consumers of brown macroalgae, especially in the dry season, while surgeon fish prefer red algae in both dry and rainy seasons. C and N isotopic values and the ratio C:N suggest that fertilizer is the principal source of nitrogen to macroalgae. Thus nitrogen supply also favored phytoplankton and seagrass growth leading to a better nutritional condition and high retention of organic carbon in the food web members during the rainy season when river influence increases. However, the great star coral Montastrea cavernosa nutritional condition decreased significantly in the rainy season. The nearest river to the PNSAV was polluted in the dry season; however, a dilution effect was detected in the rainy season, when some coral reefs were contaminated. In 2013, a new treatment plant started working in the area. I would suggest monitoring δ¹⁵N and the C: N ratio in macroalgae as indicators of the nitrogen input and coprostanol as an indicator of human feces pollution in order to verify the efficiency of the new treatment plant as part of the management program of the PNSAV.