149 resultados para irradiation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polarization switching processes in TAAP and DTAAP have been studied by the Merz method. The switching process in DTAAP is slower than in TAAP. The temperature dependence of switching time indicates that the crystal might contain groups of domain nuclei with different activation energies. X-ray irradiation causes an increase in the threshold field below which switching could not occur and decrease in the mobility of domain walls. Irradiation decreases the peak value of dielectric constant, Tc and increases the value of coercive field. Domain structure studies on TAAP crystals have shown that the crystals grow as both predominantly single domain and multi domains, depending on which the internal bias increases or remains unaffected upon irradiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromium substituted beta diketonate complexes of aluminium have been synthesized and employed as precursors for a novel soft chemistry process wherein microwave irradiation of a solution of the complex yields within minutes well crystallized needles of alpha (Al1 XCrx)(2)O-3 measuring 20 30 nm in diameter and 50 nm long By varying the microwave irradiation parameters and using a surfactant such as polyvinyl pyrrolidone the crystallite size and shape can be controlled and their agglomeration prevented These microstructural parameters as well as the polymorph of the Cr substituted Al2O3 formed may also be controlled by employing a different complex Samples of alpha (Al1 XCrx)(2)O-3 have been characterized by XRD FTIR and TEM The technique results in material of homogeneous metal composition, as shown by EDAX and can be adjusted as desired The technique has been extended to obtain coatings of alpha (Al1 XCrx)(2)O-3 on Si(100)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ethylene-co-vinyl acetate) (EVA) films were irradiated with a 1.2MeV electron beam at varied doses over the range 0-270kGy in order to investigate the modifications induced in its optical, electrical and thermal properties. It was observed that optical band gap and activation energy of EVA films decreased upon electron irradiation, whereas the transition dipole moment, oscillator strength and number of carbon atoms per cluster were found to increase upon irradiation. Further, the dielectric constant, the dielectric loss, and the ac conductivity of EVA films were found to increase with an increase in the dose of electron radiation. The result further showed that the thermal stability of EVA film samples increased upon electron irradiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irradiation of 4-aryl-4-alkylhex-5-en-2-ones (e.g. 1a) or 5-aryl-4-alkylhex-5-en-2-ones (e.g. 2a) adsorbed on montmorillonite K-10 in a commercial microwave oven furnishes the multialkylated naphthalenes (e.g. 3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prop-2-ynyloxy carbonyl function (POC) which can be cleaved under mild and neutral conditions in the presence of benzyltriethylammonium tetrathiomolybdate has been developed as a new protecting group for amines. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystal (100) wafers of n-InSb were implanted with 50 MeV Li3+ ions at various fluences ranging from 10(10) to 10(14) ions/cm(2) at room temperature. Investigations of the optical, electrical, and structural properties of the as-grown, irradiated, annealed wafers were carried out by infrared and Raman spectroscopies, Hall measurements, and high resolution x-ray diffraction (HRXRD). In the case of samples irradiated with an ion fluence of 1.6x10(14) ions/cm(2), electrical measurements at 80 K reveal that there is a decrease in carrier concentration from 8.5x10(15) (for unirradiated) to 1.1x10(15)/cm(3) and an increase in mobility from 5.4x10(4) to 1.67x10(5) cm(2)/V s. The change in carrier concentration is attributed to the creation of electron trap centers induced by ion beam irradiation and the increase in mobility to the formation of electrical inactive complexes. Nevertheless, even with the irradiation at 1.6x10(14) ions/cm(2) fluence the crystalline quality remains largely unaffected, as is seen from HRXRD and Raman studies. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As deposited amorphous and crystallized thin films of Ti 37.5% Si alloy deposited by pulsed laser ablation technique were irradiated with 100 keV Xe(+) ion beam to an ion fluence of about 10(16) ions-cm(-2). Transmission electron microscopy revealed that the implanted Xe formed amorphous nanosized clusters in both cases. The Xe ion-irradiation favors nucleation of a fcc-Ti(Si) phase in amorphous films. However, in crystalline films, irradiation leads to dissolution of the Ti(5)Si(3) intermetallic phase. In both cases, Xe irradiation leads to the evolution of similar microstructures. Our results point to the pivotal role of nucleation in the evolution of the microstructure under the condition of ion implantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured materials have attracted considerable interest in recent years due to their properties which differ strongly from their bulk phase and potential applications in nanoscale electronic and optoelectronic devices. Metal oxide nanostructures can be synthesized by variety of different synthesis techniques developed in recent years such as thermal decomposition, sol-gel technique, chemical coprecipitation, hydrothermal process, solvothermal process, spray pyrolysis, polyol process etc. All the above processes go through a tedious synthesis procedure followed by prolonged heat treatment at elevated temperature and are time consuming. In the present work we describe a rapid microwave irradiation-assisted chemical synthesis technique for the growth of nanoparticles, nanorods, and nanotubes of a variety of metal oxides in the presence of an appropriate surfactant, without the use of any templates The method is simple, inexpensive, and helps one to prepare nanostructures in a very simple way, and in a very short time, measured in minutes. The synthesis procedure employs high quality metalorganic complexes (typically -diketonates) featuring a direct metal-to-oxygen bond in its molecular structure. The complex is dissolved in a suitable solvent, often with a surfactant added, and the solution then subjected to microwave irradiation in a domestic microwave oven operating at 2.45 GHz frequency with power varying from 160-800 W, from a few seconds to a few minutes, leading to the formation of corresponding metal oxides. This method has been used successfully to synthesize nanostructures of a variety of binary and ternary metal oxides such as ZnO, CdO, Fe2O3, CuO, Ga2O3, Gd2O3, ZnFe2O4, etc. There is an observed variation in the morphology of the nanostructures with the change of different parameters such as microwave power, irradiation time, appropriate solvent, surfactant type and concentration. Cationic, anionic, nonionic and polymeric surfactants have been used to generate a variety of nanostructures. Even so, to remove the surfactant, there is either no need of heat treatment or a very brief exposure to heat suffices, to yield highly pure and crystalline oxide materials as prepared. By adducting the metal complexes, the shape of the nanostructures can be controlled further. In this manner, very well formed, single-crystalline, hexagonal nanorods and nanotubes of ZnO have been formed. Adducting the zinc complex leads to the formation of tapered ZnO nanorods with a very fine tip, suitable for electron emission applications. Particle size and their monodispersity can be controlled by a suitable choice of a precursor complex, the surfactant, and its concentration. The resulting metal oxide nanostructures have been characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, FTIR spectroscopy, photoluminescence, and electron emission measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As deposited amorphous and crystallized thin films of Ti 37.5% Si alloy deposited by pulsed laser ablation technique were irradiated with 100 keV Xe+ ion beam to an ion fluence of about 1016 ions-cm−2. Transmission electron microscopy revealed that the implanted Xe formed amorphous nanosized clusters in both cases. The Xe ion-irradiation favors nucleation of a fcc-Ti(Si) phase in amorphous films. However, in crystalline films, irradiation leads to dissolution of the Ti5Si3 intermetallic phase. In both cases, Xe irradiation leads to the evolution of similar microstructures. Our results point to the pivotal role of nucleation in the evolution of the microstructure under the condition of ion implantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ferroelectric Pb(Zr0.53Ti0.47)O-3 (PZT) and SrBi2Ta2O9 (SBT) thin films were prepared by laser ablation technique. The dielectric analysis, capacitance-voltage, ferroelectric hysteresis and DC leakage current measurements were performed before and after 50 MeV Li3+ ion irradiation. In both thin films, the irradiation produced some amount of amorphisation, considerable degradation in the ferroelectric properties and change in DC conductivity. On irradiation of these thin films, the phase transition temperature [T-c] of PZT decreased considerably from 628 to 508 K, while SBT exhibited a broad and diffuse transition with its T-c decreased from 573 to 548 K. The capacitance-voltage curve at 100 kHz showed a double butterfly loop with a large decrease in the capacitance and switching voltage. There was decrease in the ferroelectric hysteresis loop, remanant polarisation and coercive field. After annealing at a temperature of 673 K for 10 min while PZT partially regained the ferroelectric properties, while SBT did not. The DC conductivity measurements showed a shift in the onset of non-linear conduction region in irradiated SBT. The degradation of ferroelectric properties of the irradiated thin films is attributed to the irradiation-induced partial amorphization and the pinning of the ferroelectric domains by trapped charges. The regaining of properties after annealing is attributed to the thermal annealing of the defects generated during the irradiation. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of 4.0 MeV proton irradiation on the microstructure and mechanical properties of nanocrystalline (nc) nickel was investigated. The irradiation damage induced in the sample was of the order of 0.004 dpa. Transmission electron microscopy of irradiated samples indicated the presence of dislocation loops within the grains. An increase in hardness and strain-rate sensitivity (m) of nc-Ni with irradiation was noted. The rate-controlling deformation mechanism in irradiated nc-Ni was identified to be interaction of dislocations with irradiation-induced defects. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potassium titanyl phosphate single crystals were irradiated with 48 MeV lithium ions at fluences varying from 5×1012 to 1016 ions/cm2. The defects created in the crystal have been characterized using x-ray rocking curve measurements, optical transmittance, and photoluminescence spectroscopy. From x-ray rocking curve studies, the full width at half maximum for the irradiated samples was observed to increase, indicating lattice strain caused by the energetic ions. Optical transparency of these samples was found to decrease upon irradiation. The irradiated samples exhibited a broadband luminescence in the 700–900 nm region, for fluences above 5×1013 ions/cm2. The results indicate that ion-beam-induced optical effects in KTiOPO4 single crystals are very similar to the ones obtained for crystals with “gray tracks,” which are attributed to the electronic transitions in the Ti3+ levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron beam irradiation induced, bending of Iron filled, multiwalled carbon nanotubes is reported. Bending of both the carbon nanotube and the Iron contained within the core was achieved using two approaches with the aid of a high resolution electron microscope (HRTEM). In the first approach, bending of the nanotube structure results in response to the irradiation of a pristine kink defect site, while in the second approach, disordered sites induce bending by focusing the electron beam on the graphite walls. The HRTEM based in situ observations demonstrate the potential for using electron beam irradiation to investigate and manipulate the physical properties of confined nanoscale structures. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. doi:10.1063/1.3688083]