181 resultados para Mutant


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Familial diarrhea disorders are, in most cases, severe and caused by recessive mutations. We describe the cause of a novel dominant disease in 32 members of a Norwegian family. The affected members have chronic diarrhea that is of early onset, is relatively mild, and is associated with increased susceptibility to inflammatory bowel disease, small-bowel obstruction, and esophagitis. METHODS We used linkage analysis, based on arrays with single-nucleotide polymorphisms, to identify a candidate region on chromosome 12 and then sequenced GUCY2C, encoding guanylate cyclase C (GC-C), an intestinal receptor for bacterial heat-stable enterotoxins. We performed exome sequencing of the entire candidate region from three affected family members, to exclude the possibility that mutations in genes other than GUCY2C could cause or contribute to susceptibility to the disease. We carried out functional studies of mutant GC-C using HEK293T cells. RESULTS We identified a heterozygous missense mutation (c.2519G -> T) in GUCY2C in all affected family members and observed no other rare variants in the exons of genes in the candidate region. Exposure of the mutant receptor to its ligands resulted in markedly increased production of cyclic guanosine monophosphate (cGMP). This may cause hyperactivation of the cystic fibrosis transmembrane regulator (CFTR), leading to increased chloride and water secretion from the enterocytes, and may thus explain the chronic diarrhea in the affected family members. CONCLUSIONS Increased GC-C signaling disturbs normal bowel function and appears to have a proinflammatory effect, either through increased chloride secretion or additional effects of elevated cellular cGMP. Further investigation of the relevance of genetic variants affecting the GC-C-CFTR pathway to conditions such as Crohn's disease is warranted. (Funded by Helse Vest Western Norway Regional Health Authority] and the Department of Science and Technology, Government of India.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The protozoan parasite Entamoeba histolytica can invade both intestinal and extra intestinal tissues resulting in amoebiasis. During the process of invasion E. histolytica ingests red blood and host cells using phagocytic processes. Though phagocytosis is considered to be a key virulence determinant, the mechanism is not very well understood in E. histolytica. We have recently demonstrated that a novel C2 domain-containing protein kinase, EhC2PK is involved in the initiation of erythrophagocytosis. Because cells overexpressing the kinase-dead mutant of EhC2PK displayed a reduction in erythrophagocytosis, it appears that kinase activity is necessary for initiation. Biochemical analysis showed that EhC2PK is an unusual Mn2+-dependent serine kinase. It has a trans-autophosphorylated site at Ser(428) as revealed by mass spectrometric and biochemical analysis. The autophosphorylation defective mutants (S428A, KD Delta C) showed a reduction in auto and substrate phosphorylation. Time kinetics of in vitro kinase activity suggested two phases, an initial short slow phase followed by a rapid phase for wild type protein, whereas mutations in the autophosphorylation sites that cause defect (S428A) or conferred phosphomimetic property (S428E) displayed no distinct phases, suggesting that autophosphorylation may be controlling kinase activity through an autocatalytic mechanism. A reduction and delay in erythrophagocytosis was observed in E. histolytica cells overexpressing S428A and KD Delta C proteins. These results indicate that enrichment of EhC2PK at the site of phagocytosis enhances the rate of trans-autophosphorylation, thereby increasing kinase activity and regulating the initiation of erythrophagocytosis in E. histolytica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The roles of myosin during muscle contraction are well studied, but how different domains of this protein are involved in myofibril assembly in vivo is far less understood. The indirect flight muscles (IFMs) of Drosophila melanogaster provide a good model for understanding muscle development and function in vivo. We show that two missense mutations in the rod region of the myosin heavy-chain gene, Mhc, give rise to IFM defects and abnormal myofibrils. These defects likely result from thick filament abnormalities that manifest during early sarcomere development or later by hypercontraction. The thick filament defects are accompanied by marked reduction in accumulation of flightin, a myosin binding protein, and its phosphorylated forms, which are required to stabilise thick filaments. We investigated with purified rod fragments whether the mutations affect the coiled-coil structure, rod aggregate size or rod stability. No significant changes in these parameters were detected, except for rod thermodynamic stability in one mutation. Molecular dynamics simulations suggest that these mutations may produce localised rod instabilities. We conclude that the aberrant myofibrils are a result of thick filament defects, but that these in vivo effects cannot be detected in vitro using the biophysical techniques employed. The in vivo investigation of these mutant phenotypes in IFM development and function provides a useful platform for studying myosin rod and thick filament formation generically, with application to the aetiology of human myosin rod myopathies. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the course of infection, Salmonella has to face several potentially lethal environmental conditions, one such being acidic pH. The ability to sense and respond to the acidic pH is crucial for the survival and replication of Salmonella. The physiological role of one gene (STM1485) involved in this response, which is upregulated inside the host cells (by 90- to 113-fold) is functionally characterized in Salmonella pathogenesis. In vitro, the DSTM1485 neither exhibited any growth defect at pH 4.5 nor any difference in the acid tolerance response. The DSTM1485 was compromised in its capacity to proliferate inside the host cells and complementation with STM1485 gene restored its virulence. We further demonstrate that the surface translocation of Salmonella pathogenicity island-2 (SPI-2) encoded translocon proteins, SseB and SseD were reduced in the DSTM1485. The increase in co-localization of this mutant with lysosomes was also observed. In addition, the DSTM1485 displayed significantly reduced competitive indices (CI) in spleen, liver and mesenteric lymph nodes in murine typhoid model when infected by intra-gastric route. Based on these results, we conclude that the acidic pH induced STM1485 gene is essential for intracellular replication of Salmonella.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IDH1 mutations are frequent genetic alterations in low-grade diffuse gliomas and secondary glioblastoma (GBM). To validate mutation frequency, IDH1 gene at codon 132 was sequenced in 74 diffusely infiltrating astrocytomas: diffuse astrocytoma (DA; World Health Organization WHO] grade II), anaplastic astrocytoma (AA; WHO grade III), and GBM (WHO grade IV). All cases were immunostained with IDH1-R132H monoclonal antibody. Mutational status was correlated with mutant protein expression, patient age, duration of symptoms, and prognosis of patients with GBM. We detected 31 (41.9%) heterozygous IDH1 mutations resulting in arginine-to-histidine substitution (R132H;CGT-CAT). All 12 DAs (100%), 13 of 14 AAs (92.9%), and 6 of 48 GBMs (12.5%) (5/6 83.3%] secondary, and 1/42 2.4%] primary) harbored IDH1 mutations. The correlation between mutational status and protein expression was significant (P < .001). IDH1 mutation status, though not associated with prognosis of patients with GBM, showed significant association with younger age and longer duration of symptoms in the whole cohort (P < .001). Our study validates IDH1 mutant protein expression across various grades of astrocytoma, and demonstrates a high incidence of IDH1 mutations in DA, AA, and secondary GBM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Helicobacter pylori is an important human pathogen and one of the most successful chronic colonizers of the human body. H. pylori uses diverse mechanisms to modulate its interaction with the host in order to promote chronic infection and overcome host immune response. Restriction-modification genes are a major part of strain-specific genes present in H. pylori. The role of N-6 -adenine methylation in bacterial gene regulation and virulence is well established but not much is known about the effect of C-5 -cytosine methylation on gene expression in prokaryotes. In this study, it was observed by microarray analysis and RT-PCR, that deletion of an orphan C-5 -cytosine methyltransferase, hpyAVIBM in H. pylori strains AM5and SS1 has a significant effect on the expression of number of genes belonging to motility, adhesion and virulence. AM Delta DhpyAVIBM mutant strain has a different LPS profile and is able to induce high IL-8 production compared to wild-type. hpyAVIBM from strain 26695 is able to complement mutant SS1 and AM5 strains. This study highlights a possible significance of cytosine methylation in the physiology of H. pylori.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toxin-antitoxin (TA) systems are found on both bacterial plasmids and chromosomes, but in most cases their functional role is unclear. Gene knockouts often yield limited insights into functions of individual TA systems because of their redundancy. The well-characterized F-plasmid-based CcdAB TA system is important for F-plasmid maintenance. We have isolated several point mutants of the toxin CcdB that fail to bind to its cellular target, DNA gyrase, but retain binding to the antitoxin, CcdA. Expression of such mutants is shown to result in release of the WT toxin from a functional preexisting TA complex as well as derepression of the TA operon. One such inactive, active-site mutant of CcdB was used to demonstrate the contribution of CcdB to antibiotic persistence. Transient activation of WT CcdB either by coexpression of the mutant or by antibiotic/heat stress was shown to enhance the generation of drug-tolerant persisters in a process dependent on Lon protease and RecA. An F-plasmid containing a ccd locus can, therefore, function as a transmissible persistence factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pre-starvation amoebae of Dictyostelium discoideum exhibit random movements. Starved cells aggregate by directed movements (chemotaxis) towards cyclic AMP and differentiate into live spores or dead stalk cells. Many differences between presumptive spore and stalk cells precede differentiation. We have examined whether cell motility-related factors are also among them. Cell speeds and localisation of motility-related signalling molecules were monitored by live cell imaging and immunostaining (a) in nutrient medium during growth, (b) immediately following transfer to starvation medium and (c) in nutrient medium that was re-introduced after a brief period of starvation. Cells moved randomly under all three conditions but mean speeds increased following transfer from nutrient medium to starvation medium; the transition occurred within 15 min. The distribution of speeds in starvation medium was bimodal: about 20% of the cells moved significantly faster than the remaining 80%. The motility-related molecules F-actin, PTEN and PI3 kinase were distributed differently in slow and fast cells. Among starved cells, the calcium content of slower cells was lower than that of the faster cells. All differences reverted within 15 min after restoration of the nutrient medium. The slow/fast distinction was missing in Polysphondylium pallidum, a cellular slime mould that lacks the presumptive stalk and spore cell classes, and in the trishanku (triA(center dot)) mutant of D. discoideum, in which the classes exist but are unstable. The transition from growth to starvation triggers a spontaneous and reversible switch in the distribution of D. discoideum cell speeds. Cells whose calcium content is relatively low (known to be presumptive spore cells) move slower than those whose calcium levels are higher (known to be presumptive stalk cells). Slow and fast cells show different distributions of motility-related proteins. The switch is indicative of a bistable mechanism underlying cell motility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Of all tRNAs, initiator tRNA is unique in its ability to start protein synthesis by directly binding the ribosomal P-site. This ability is believed to derive from the almost universal presence of three consecutive G-C base (3G-C) pairs in the anticodon stem of initiator tRNA. Consistent with the hypothesis, a plasmid-borne initiator tRNA with one, two, or all 3G-C pairs mutated displays negligible initiation activity when tested in a WT Escherichia coli cell. Given this, the occurrence of unconventional initiator tRNAs lacking the 3G-C pairs, as in some species of Mycoplasma and Rhizobium, is puzzling. We resolve the puzzle by showing that the poor activity of unconventional initiator tRNAs in E. coli is because of competition from a large pool of the endogenous WT initiator tRNA (possessing the 3G-C pairs). We show that E. coli can be sustained on an initiator tRNA lacking the first and third G-C pairs; thereby reducing the 3G-C rule to a mere middle G-C requirement. Two general inferences following from our findings, that the activity of a mutant gene product may depend on its abundance in the cell relative to that of the WT, and that promiscuous initiation with elongator tRNAs has the potential to enhance phenotypic diversity without affecting genomic integrity, have been discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term batch cultures of Escherichia coli grown in nutrient-rich medium accumulate mutations that provide a growth advantage in the stationary phase (GASP). We have examined the survivors of prolonged stationary phase to identify loci involved in conferring a growth advantage and show that a mutation in the hns gene causing reduced activity of the global regulator H-NS confers a GASP phenotype under specific conditions. The hns-66 allele bears a point mutation within the termination codon of the H-NS open reading frame, resulting in a longer protein that is partially functional. Although isolated from a long-term stationary-phase culture of the parent carrying the rpoS819 allele that results in reduced RpoS activity, the hns-66 survivor showed a growth disadvantage in the early stationary phase (24 to 48 h) when competed against the parent. The hns-66 mutant is also unstable and reverts at a high frequency in the early stationary phase by accumulating second-site suppressor mutations within the ssrA gene involved in targeting aberrant proteins for proteolysis. The mutant was more stable and showed a moderate growth advantage in combination with the rpoS819 allele when competed against a 21-day-old parent. These studies show that H-NS is a target for mutations conferring fitness gain that depends on the genetic background as well as on the stage of the stationary phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most of the restriction endonucleases (REases) are dependent on Mg2+ for DNA cleavage, and in general, Ca2+ inhibits their activity. RKpnI, an HNH active site containing beta beta alpha-Me finger nuclease, is an exception. In presence of Ca2+, the enzyme exhibits high-fidelity DNA cleavage and complete suppression of Mg2+-induced promiscuous activity. To elucidate the mechanism of unusual Ca2+-mediated activity, we generated alanine variants in the putative Ca-2+ binding motif, E(132)xD(134)xD(136), of the enzyme. Mutants showed decreased levels of DNA cleavage in the presence of Ca2+. We demonstrate that ExDxD residues are involved in Ca2+ coordination; however, the invariant His of the catalytic HNH motif acts as a general base for nucleophile activation, and the other two active site residues, D148 and Q175, also participate in Ca2+-mediated cleavage. Insertion of a 10-amino acid linker to disrupt the spatial organization of the ExDxD and HNH motifs impairs Ca2+ binding and affects DNA cleavage by the enzyme. Although ExDxD mutant enzymes retained efficient cleavage at the canonical sites in the presence of Mg2+, the promiscuous activity was greatly reduced, indicating that the carboxyl residues of the acidic triad play an important role in sequence recognition by the enzyme. Thus, the distinct Ca2+ binding motif that confers site specific cleavage upon Ca2+ binding is also critical for the promiscuous activity of the Mg2+-bound enzyme, revealing its role in metal ion-mediated modulation of DNA cleavage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Potyviruses temporally regulate their protein function by polyprotein processing. Previous studies have shown that VPg (Viral Protein genome-linked) of Pepper vein banding virus interacts with the NIa-Pro (Nuclear Inclusion-a protease) domain, and modulates the kinetics of the protease. In the present study, we report for the first time that VPg harbors the Walker motifs A and B, and the presence of NIa-Pro, especially in cis (cleavage site (E191A) VPg-Pro mutant), is essential for manifestation of the ATPase activity. Mutation of Lys47 (Walker motif A) and Asp88:Glu89 (Walker motif B) to alanine in E191A VPg-Pro lead to reduced ATPase activity, confirming that this activity was inherent to VPg. We propose that potyviral VPg, established as an intrinsically disordered domain, undergoes plausible structural alterations upon interaction with globular NIa-Pro which induces the ATPase activity. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resistance to therapy limits the effectiveness of drug treatment in many diseases. Drug resistance can be considered as a successful outcome of the bacterial struggle to survive in the hostile environment of a drug-exposed cell. An important mechanism by which bacteria acquire drug resistance is through mutations in the drug target. Drug resistant strains (multi-drug resistant and extensively drug resistant) of Mycobacterium tuberculosis are being identified at alarming rates, increasing the global burden of tuberculosis. An understanding of the nature of mutations in different drug targets and how they achieve resistance is therefore important. An objective of this study is to first decipher sequence as well as structural bases for the observed resistance in known drug resistant mutants and then to predict positions in each target that are more prone to acquiring drug resistant mutations. A curated database containing hundreds of mutations in the 38 drug targets of nine major clinical drugs, associated with resistance is studied here. Mutations have been classified into those that occur in the binding site itself, those that occur in residues interacting with the binding site and those that occur in outer zones. Structural models of the wild type and mutant forms of the target proteins have been analysed to seek explanations for reduction in drug binding. Stability analysis of an entire array of 19 mutations at each of the residues for each target has been computed using structural models. Conservation indices of individual residues, binding sites and whole proteins are computed based on sequence conservation analysis of the target proteins. The analyses lead to insights about which positions in the polypeptide chain have a higher propensity to acquire drug resistant mutations. Thus critical insights can be obtained about the effect of mutations on drug binding, in terms of which amino acid positions and therefore which interactions should not be heavily relied upon, which in turn can be translated into guidelines for modifying the existing drugs as well as for designing new drugs. The methodology can serve as a general framework to study drug resistant mutants in other micro-organisms as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large numbers of Plasmodium genes have been predicted to have introns. However, little information exists on the splicing mechanisms in this organism. Here, we describe the DExD/DExH-box containing Pre-mRNA processing proteins (Prps), PfPrp2p, PfPrp5p, PfPrp16p, PfPrp22p, PfPrp28p, PfPrp43p and PfBrr2p, present in the Plasmodium falciparum genome and characterized the role of one of these factors, PfPrp16p. It is a member of DEAH-box protein family with nine collinear sequence motifs, a characteristic of helicase proteins. Experiments with the recombinantly expressed and purified PfPrp16 helicase domain revealed binding to RNA, hydrolysis of ATP as well as catalytic helicase activities. Expression of helicase domain with the C-terminal helicase-associated domain (HA2) reduced these activities considerably, indicating that the helicase-associated domain may regulate the PfPrp16 function. Localization studies with the PfPrp16 GFP transgenic lines suggested a role of its N-terminal domain (1-80 amino acids) in nuclear targeting. Immunodepletion of PfPrp16p, from nuclear extracts of parasite cultures, blocked the second catalytic step of an in vitro constituted splicing reaction suggesting a role for PfPrp16p in splicing catalysis. Further we show by complementation assay in yeast that a chimeric yeast-Plasmodium Prp16 protein, not the full length PfPrp16, can rescue the yeast prp16 temperature-sensitive mutant. These results suggest that although the role of Prp16p in catalytic step II is highly conserved among Plasmodium, human and yeast, subtle differences exist with regards to its associated factors or its assembly with spliceosomes. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peptidase N (PepN), the sole M1 family member in Escherichia coli, displays broad substrate specificity and modulates stress responses: it lowers resistance to sodium salicylate (NaSal)-induced stress but is required during nutritional downshift and high temperature (NDHT) stress. The expression of PepN does not significantly change during different growth phases in LB or NaSal-induced stress; however, PepN amounts are lower during NDHT stress. To gain mechanistic insights on the roles of catalytic activity of PepN in modulating these two stress responses, alanine mutants of PepN replacing E264 (GAMEN motif) and E298 (HEXXH motif) were generated. There are no major structural changes between purified wild type (WT) and mutant proteins, which are catalytically inactive. Importantly, growth profiles of Delta pepN upon expression of WT or mutant proteins demonstrated the importance of catalytic activity during NDHT but not NaSal-induced stress. Further fluorescamine reactivity studies demonstrated that the catalytic activity of PepN is required to generate higher intracellular amounts of free N-terminal amino acids; consequently, the lower growth of Delta pepN during NDHT stress increases with high amounts of casamino acids. Together, this study sheds insights on the expression and functional roles of the catalytic activity of PepN during adaptation to NDHT stress. (C) 2012 Elsevier GmbH. All rights reserved.