48 resultados para water flow

em Indian Institute of Science - Bangalore - Índia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study presents the characterization of DNAPL and water flow in a fracture under confining pressure. A comprehensive mathematical model and the conditions under which DNAPL will enter an initially water-saturated deforming rock fracture are discussed. A numerical model with which to predict the quantity of each phase in terms of their saturations in deforming rock joint is developed. The effect of varying confining stresses on the traverse time of DNAPL across a fractured aquitard is studied. The sensitivity analysis for physical and hydraulic properties like initial fracture apertures, fracture dips, equivalent fracture aperture and confining pressures are performed and discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ladle constitutes a crucial element in the pouring system for developing process consistency and quality in the manufacture of castings. Flow of molten metal from T-spout ladles, with the spout projecting at an angle from the shell of the ladle, was investigated by simulation, modeling and analysis. This was followed by experimental validation for water flow in translucent models, and verification in a cast iron foundry. Key parameters in the design of a ladle (for its geometry) have been identified as the ladle size, spout diameter and its angle. Velocity and flow rate from a T-spout ladle are governed by and increase with increase in angle of tilt apart from the aforementioned design parameters. Cross section and profile of the issuing jet displaying a stable twisting pattern, during its free-fall of model fluid water and molten metal iron, are notable aspects in the design of the ladle, particularly the spout exit.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ultimate bearing capacity of strip foundations subjected to horizontal groundwater flow has been computed by making use of the stress characteristics method which is well known for its capability in solving quite accurately different stability problems in geotechnical engineering. The numerical solution has been generated both for smooth and rough footings placed on frictional soils. A correction factor (fγ) associated with Nγ term, to account for the existence of ground water flow, has been introduced. The variation of fγ has been obtained as a function of hydraulic gradient (i) for different values of soil frictional angle. The magnitude of fγ reduces continuously with an increase in the value of i.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The potential of textured hydrophobic surfaces to provide substantial drag reduction has been attributed to the presence of air bubbles trapped on the surface cavities. In this paper, we present results on water flow past a textured hydrophobic surface, while systematically varying the absolute pressure close to the surface. Trapped air bubbles on the surface are directly visualized, along with simultaneous pressure drop measurements across the surface in a microchannel configuration. We find that varying the absolute pressure within the channel greatly influences the trapped air bubble behavior, causing a consequent effect on the pressure drop (drag). When the absolute pressure within the channel is maintained below atmospheric pressure, we find that the air bubbles grow in size, merge and eventually detach from the surface. This growth and subsequent merging of the air bubbles leads to a substantial increase in the pressure drop. On the other hand, a pressure above the atmospheric pressure within the channel leads to gradual shrinkage and eventual disappearance of trapped air bubbles. We find that in this case, air bubbles do cause reduction in the pressure drop with the minimum pressure drop (or maximum drag reduction) occurring when the bubbles are flush with the surface. These results show that the trapped air bubble dynamics and the pressure drop across a textured hydrophobic microchannel are very significantly dependent on the absolute pressure within the channel. The results obtained hold important implications toward achieving sustained drag reduction in microfluidic applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present results on water flow past randomly textured hydrophobic surfaces with relatively large surface features of the order of 50 µm. Direct shear stress measurements are made on these surfaces in a channel configuration. The measurements indicate that the flow rates required to maintain a shear stress value vary substantially with water immersion time. At small times after filling the channel with water, the flow rates are up to 30% higher compared with the reference hydrophilic surface. With time, the flow rate gradually decreases and in a few hours reaches a value that is nearly the same as the hydrophilic case. Calculations of the effective slip lengths indicate that it varies from about 50 µm at small times to nearly zero or “no slip” after a few hours. Large effective slip lengths on such hydrophobic surfaces are known to be caused by trapped air pockets in the crevices of the surface. In order to understand the time dependent effective slip length, direct visualization of trapped air pockets is made in stationary water using the principle of total internal reflection of light at the water-air interface of the air pockets. These visualizations indicate that the number of bright spots corresponding to the air pockets decreases with time. This type of gradual disappearance of the trapped air pockets is possibly the reason for the decrease in effective slip length with time in the flow experiments. From the practical point of usage of such surfaces to reduce pressure drop, say, in microchannels, this time scale of the order of 1 h for the reduction in slip length would be very crucial. It would ultimately decide the time over which the surface can usefully provide pressure drop reductions. ©2009 American Institute of Physics

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Subsurface geophysical surveys were carried out using a large range of methods in an unconfined sandstone aquifer in semiarid south-western Niger for improving both the conceptual model of water flow through the unsaturated zone and the parameterization of numerical a groundwater model of the aquifer. Methods included: electromagnetic mapping, electrical resistivity tomography (ERT), resistivity logging, time domain electromagnetic sounding (TDEM), and magnetic resonance sounding (MRS). Analyses of electrical conductivities, complemented by geochemical measurements, allowed us to identify preferential pathways for infiltration and drainage beneath gullies and alluvial fans. The mean water content estimated by MRS (13%) was used for computing the regional groundwater recharge from long-term change in the water table. The ranges in permeability and water content obtained with MRS allowed a reduction of the degree of freedom of aquifer parameters used in groundwater modelling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The proportion of chemical elements passing through vegetation prior to being exported in a stream was quantified for a forested tropical watershed(Mule Hole, South India) using an extensive hydrological and geochemical monitoring at several scales. First, a solute annual mass balance was established at the scale of the soil-plant profile for assessing the contribution of canopy interaction and litter decay to the solute fluxes of soil inputs (overland flow) and soil outputs (pore water flow as seepages). Second, based on the respective contributions of overland flow and seepages to the stream flow as estimated by a hydrological lumped model, we assigned the proportion of chemical elements in the stream that transited through the vegetation at both flood event (End Member Mixing Analysis) and seasonal scales. At the scale of the 1D soil-plant profile, leaching from the canopy constituted the main source of K above the ground surface. Litter decay was the main source of Si, whereas alkalinity, Ca and Mg originated in the same proportions from both sources. The contribution of vegetation was negligible for Na. Within the soil, all elements but Na were removed from the pore water in proportions varying from 20% for Cl to 95% for K: The soil output fluxes corresponded to a residual fraction of the infiltration fluxes. The behavior of K, Cl, Ca and Mg in the soil-plant profile can be explained by internal cycling, as their soil output fluxes were similar to the atmospheric inputs. Na was released from soils as a result of Na-plagioclase weathering and accompanied by additional release of Si. Concentration of soil pore water by evapotranspiration might limit the chemical weathering in the soil. Overall, the solute K, Ca, Mg, alkalinity and Si fluxes associated with the vegetation turnover within the small experimental watershed represented 10-15 times the solute fluxes exported by the stream, of which 83-97% transited through the vegetation. One important finding is that alkalinity and Si fluxes at the outlet were not linked to the ``current weathering'' of silicates in this watershed. These results highlight the dual effect of the vegetation cover on the solute fluxes exported from the watershed: On one hand the runoff was limited by evapotranspiration and represented only 10% of the annual rainfall, while on the other hand, 80-90% of the overall solute flux exported by the stream transited through the vegetation. The approach combining geochemical monitoring and accurate knowledge of the watershed hydrological budget provided detailed understanding of several effects of vegetation on stream fluxes: (1) evapotranspiration (limiting), (2) vertical transfer through vegetation from vadose zone to ground surface (enhancing) and (3) redistribution by throughfalls and litter decay. It provides a good basis for calibrating geochemical models and more precisely assessing the role of vegetation on soil processes. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The work studies the extent of asymmetric flow in water models of continuous casting molds of two different configurations. In the molds where fluid is discharged through multiple holes at the bottom, the flow pattern in the lower portion depends on the size of the lower two recirculating domains. If they reach the mold bottom, the flow pattern in the lower portion is symmetrical about the central plane; otherwise, it is asymmetrical. On the other hand, in the molds where the fluid is discharged through the entire mold cross section, the flow pattern is always asymmetrical if the aspect ratio is 1:6.25 or more. The fluid jet swirls while emerging through the nozzle. The interaction of the swirling Jets with the wide sidewalls of the mold gives rise to asymmetrical flow inside the mold. In the molds with lower aspect ratios, where the jets do not touch the wide side walls, the flow pattern is symmetrical about the central plane.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this letter, we submit our comment on the following recently published papers by Kalidas Das: (1) ``Influence of chemical reaction and viscous dissipation on MHD mixed convection flow,'' Journal of Mechanical Science and Technology 28 (5) (2014) 1881-1885; and (2) ``Cu-water nanofluid flow and heat transfer over a shrinking sheet,'' Journal of Mechanical Science and Technology 28 (12) (2014) 5089-5094. The authors attempt to present the similarity solutions in both papers. We comment that the similarity transformations considered in Refs. 1, 2] are incorrect. Thus, the results presented by Kalidas Das lead to invalid conclusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report an experimental study of a new type of turbulent flow that is driven purely by buoyancy. The flow is due to an unstable density difference, created using brine and water, across the ends of a long (length/diameter = 9) vertical pipe. The Schmidt number Sc is 670, and the Rayleigh number (Ra) based on the density gradient and diameter is about 10(8). Under these conditions the convection is turbulent, and the time-averaged velocity at any point is `zero'. The Reynolds number based on the Taylor microscale, Re-lambda, is about 65. The pipe is long enough for there to be an axially homogeneous region, with a linear density gradient, about 6-7 diameters long in the midlength of the pipe. In the absence of a mean flow and, therefore, mean shear, turbulence is sustained just by buoyancy. The flow can be thus considered to be an axially homogeneous turbulent natural convection driven by a constant (unstable) density gradient. We characterize the flow using flow visualization and particle image velocimetry (PIV). Measurements show that the mean velocities and the Reynolds shear stresses are zero across the cross-section; the root mean squared (r.m.s.) of the vertical velocity is larger than those of the lateral velocities (by about one and half times at the pipe axis). We identify some features of the turbulent flow using velocity correlation maps and the probability density functions of velocities and velocity differences. The flow away from the wall, affected mainly by buoyancy, consists of vertically moving fluid masses continually colliding and interacting, while the flow near the wall appears similar to that in wall-bound shear-free turbulence. The turbulence is anisotropic, with the anisotropy increasing to large values as the wall is approached. A mixing length model with the diameter of the pipe as the length scale predicts well the scalings for velocity fluctuations and the flux. This model implies that the Nusselt number would scale as (RaSc1/2)-Sc-1/2, and the Reynolds number would scale as (RaSc-1/2)-Sc-1/2. The velocity and the flux measurements appear to be consistent with the Ra-1/2 scaling, although it must be pointed out that the Rayleigh number range was less than 10. The Schmidt number was not varied to check the Sc scaling. The fluxes and the Reynolds numbers obtained in the present configuration are Much higher compared to what would be obtained in Rayleigh-Benard (R-B) convection for similar density differences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A microcontroller based, thermal energy meter cum controller (TEMC) suitable for solar thermal systems has been developed. It monitors solar radiation, ambient temperature, fluid flow rate, and temperature of fluid at various locations of the system and computes the energy transfer rate. It also controls the operation of the fluid-circulating pump depending on the temperature difference across the solar collector field. The accuracy of energy measurement is +/-1.5%. The instrument has been tested in a solar water heating system. Its operation became automatic with savings in electrical energy consumption of pump by 30% on cloudy days.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the optimal load flow problem in a fixed-head hydrothermal electric power system. Equality constraints on the volume of water available for active power generation at the hydro plants as well as inequality constraints on the reactive power generation at the voltage controlled buses are imposed. Conditions for optimal load flow are derived and a successive approximation algorithm for solving the optimal generation schedule is developed. Computer implementation of the algorithm is discussed, and the results obtained from the computer solution of test systems are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Better operational control of water networks can help reduce leakage, maintain pressure, and control flow. Proportional integral derivative (PID) controllers, with proper fine-tuning, can help water utility operators achieve targets faster without creating undue transients. The authors compared three tuning methods, in different test situations, involving flow and level control to different reservoirs. Although target values were reached with all three tuning methods, the methods’ performances varied significantly. The lowest performer among the three was the method most widely used in the industry—standard tuning by the Ziegler-Nichols method. Achieving better results was offline tuning by genetic algorithms. Achieving the best control, though, was a fuzzy logic–based online tuning approach—the FZPID controller. The FZPID controller had fewer overshoots and took significantly less time to tune the gains for each problem. This new tuning approach for PID controllers can be applied to a variety of problems and can increase the performance of water networks of any size and structure