67 resultados para thyroid hormones

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heterogeneity of chicken prealbumin (PA) has been shown to be due to the occurrence of three different plasma proteins (PA1 PA2 and PA3). Equilibrium dialysis studies revealed that the thyroid hormones bind specifically to PA2. These hormones bind at the same site on PA2. Circular dichroism studies failed to reveal conformational changes on interaction of retinol-binding protein and thyroid hormone with PA2. Both retinol-binding protein and thyroid hormone are independently transported by PA2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organoselenium compounds as functional mimics of iodothyronine deiodinase are described. The naphthyl-based compounds having two selenol groups are remarkably efficient in the inner-ring deiodination of thyroxine. The introduction of a basic amino group in close proximity to one of the selenol moieties enhances the deiodination. This study suggests that an increase in the nucleophilic reactivity of the conserved Cys residue at the active site of deiodinases is very important for effective deiodination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The type1 iodothyronine deiodinase (1D-1) in liver and kidney converts the L-thyroxine (T4), a prohormone, by outer-ring (5) deiodination to biologically active 3,3,5-triiodothyronine (T3) or by inner-ring (5) deiodination to inactive 3,3,5-triiodothronine (rT3). Sulfate conjugation is an important step in the irreversible inactivation of thyroid hormones. While sulfate conjugation of the phenolic hydroxyl group stimulates the 5-deiodination of T4 and T3, it blocks the 5-deiodination of T4. We show that thyroxine sulfate (T4S) undergoes faster deiodination as compared to the parent thyroid hormone T4 by synthetic selenium compounds. It is also shown that ID-3 mimics, which are remarkably selective to the inner-ring deiodination of T4 and T3, changes the selectivity completely when T4S is used as a substrate. From the theoretical investigations, it is observed that the strength of halogen bonding increases upon sulfate conjugation, which leads to a change in the regioselectivity of ID-3 mimics towards the deiodination of T4S. It has been shown that these mimics perform both the 5- and 5-ring deiodinations by an identical mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iodothyronine deiodinases are selenoenzymes which regulate the thyroid hormone homeostasis by catalyzing the regioselective deiodination of thyroxine (T4). Synthetic deiodinase mimetics are important not only to understand the mechanism of enzyme catalysis, but also to develop therapeutic agents as abnormal thyroid hormone levels have implications in different diseases, such as hypoxia, myocardial infarction, critical illness, neuronal ischemia, tissue injury, and cancer. Described herein is that the replacement of sulfur/selenium atoms in a series of deiodinase mimetics by tellurium remarkably alters the reactivity as well as regioselectivity toward T4. The tellurium compounds reported in this paper represent the first examples of deiodinase mimetics which mediate sequential deiodination of T4 to produce all the hormone derivatives including T0 under physiologically relevant conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Iodothyronine deiodinases (IDs) are mammalian selenoenzymes that play an important role in the activation and inactivation pound of thyroid hormones. It is known that iodothyronamines (TnAMs), produced by the decarboxylation of thyroid hormones, act as substrates for deiodinases. To understand whether decarboxylation alters the rate and/or regioselectivity of deiodination by using synthetic deiodinase mimics, we studied the deiodination of different iodothyronamines. The triiodo derivative 3,3',5-triiodothyronamine (T3AM) is deiodinated at the inner ring by naphthyl-based deiodinase mimics, which is similar to the deiodination of 3,3',5-triiodothyronine (T3). However, T3AM under-goes much slower deiodination than T3. Detailed experimental and theoretical investigations suggest that T3AM forms a weaker halogen bond with selenium donors than T3. Kinetic studies and single-crystal X-ray structures of T3 and T3AM reveal that intermolecular I center dot center dot center dot I interactions may play an important role in deiodination. The formation of hydrogen- and halogen-bonding assemblies, which leads to the formation of a dimeric species of T3 in solution, facilitates the interactions between the selenium and iodine atoms. In contrast, T3AM, which does not have I center dot center dot I interactions, undergoes much slower deiodination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. 1. The binding parameters of prealbumin-2 with retinol-binding protein and thyroxine (T4) revealed the existence of distinct and multiple sites for both retinol-binding protein and T4. 2. 2. From the analysis of binding parameters of retinol-binding protein with prealbumin-2 it is clear that under steady-state conditions about 99% of the holo-retinol-binding protein remains bound to prealbumin-2. 3. 3. Equilibrium dialysis studies on binding properties of thyroid hormones with prealbumin-2 revealed that it has a single high affinity site and three low affinity sites. 4. 4. The occurrence of three carrier proteins for thyroid hormones, thyroxine-binding globulin, prealbumin-2 and albumin has been demonstrated. However, the chicken thyroxine-binding globulin differs from human thyroxine-binding globulin by being relatively less acidic and occuring at a two-fold lower concentration. But the thyroid hormone binding parameters are comparable. 5. 5. Highly sensitive methods were developed for determination of T4 binding capacities of the various proteins and plasma level of total T4 by fractionation of carrier proteins and further quantitatively employing in electrophoresis and equilibrium dialysis. 6. 6. The thyroxine-binding proteins were found to be two types, one (viz., thyroxine-binding globulin) of great affinity but of low binding capacity, which mainly acts as reservoir of T4, and another (viz.,prealbumin-2) of low affinity but of high binding capacity, which can participate predominantly in the control of the free T4 pool.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thyroid hormones are essential for the development and differentiation of all cells of the human body. They regulate protein, fat, and carbohydrate metabolism. In this Account, we discuss the synthesis, structure, and mechanism of action of thyroid hormones and their analogues. The prohormone thyroxine (14) is synthesized on thyroglobulin by thyroid peroxidase (TPO), a heme enzyme that uses iodide and hydrogen peroxide to perform iodination and phenolic coupling reactions. The monodeiodination of T4 to 3,3',5-triiodothyronine (13) by selenium-containing deiodinases (ID-1, ID-2) is a key step in the activation of thyroid hormones. The type 3 deiodinase (ID-3) catalyzes the deactivation of thyroid hormone in a process that removes iodine selectively from the tyrosyl ring of T4 to produce 3,3',5'-triiodothyronine (rT3). Several physiological and pathological stimuli influence thyroid hormone synthesis. The overproduction of thyroid hormones leads to hyperthyroidism, which is treated by antithyroid drugs that either inhibit the thyroid hormone biosynthesis and/or decrease the conversion of T4 to T3. Antithyroid drugs are thiourea-based compounds, which indude propylthiouracil (PTU), methimazole (MM I), and carbimazole (CBZ). The thyroid gland actively concentrates these heterocyclic compounds against a concentration gradient Recently, the selenium analogues of PTU, MMI, and CBZ attracted significant attention because the selenium moiety in these compounds has a higher nucleophilicity than that of the sulfur moiety. Researchers have developed new methods for the synthesis of the selenium compounds. Several experimental and theoretical investigations revealed that the selone (C=Se) in the selenium analogues is more polarized than the thione (C=S) in the sulfur compounds, and the selones exist predominantly in their zwitterionic forms. Although the thionamide-based antithyroid drugs have been used for almost 70 years, the mechanism of their action is not completely understood. Most investigations have revealed that MMI and PTU irreversibly inhibit TPO. PTU, MTU, and their selenium analogues also inhibit ID-1, most likely by reacting with the selenenyl iodide intermediate. The good ID-1 inhibitory activity of Pill and its analogues can be ascribed to the presence of the -N(H)-C(=O)- functionality that can form hydrogen bonds with nearby amino add residues in the selenenyl sulfide state. In addition to the TPO and ID-1 inhibition, the selenium analogues are very good antioxidants. In the presence of cellular reducing agents such as GSH, these compounds catalytically reduce hydrogen peroxide. They can also efficiently scavenge peroxynitrite, a potent biological oxidant and nitrating agent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thyroid hormones regulate almost every process in the body, including body temperature, growth, and heart rate. They influence carbohydrate metabolism, protein synthesis and breakdown, and cardiovascular, renal, and brain function. Two new polymorphs of synthetic L-thyroxine (T4) are reported and the effect of polymorphism on the solubility of this important hormone is shown. Conformational changes were also discovered to have a remarkable effect on the strength of halogen bonding and the reactivity of the CI bonds, which could have a significant effect on the hormone activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth of multicellular organisms depends on maintenance of proper balance between proliferation and differentiation. Any disturbance in this balance in animal cells can lead to cancer. Experimental evidence is provided to conclude with special reference to the action of follicle-stimulating hormone (FSH) on Sertoli cells, and luteinizing hormone (LH) on Leydig cells that these hormones exert a differential action on their target cells, i.e., stimulate proliferation when the cells are in an undifferentiated state which is the situation with cancer cells and promote only functional parameters when the cell are fully differentiated. Hormones and growth factors play a key role in cell proliferation, differentiation, and apoptosis. There is a growing body of evidence that various tumors express some hormones at high levels as well as their cognate receptors indicating the possibility of a role in progression of cancer. Hormones such as LH, FSH, and thyroid-stimulating hormone have been reported to stimulate cell proliferation and act as tumor promoter in a variety of hormone-dependent cancers including gonads, lung, thyroid, uterus, breast, prostate, etc. This review summarizes evidence to conclude that these hormones are produced by some cancer tissues to promote their own growth. Also an attempt is made to explain the significance of the differential action of hormones in progression of cancer with special reference to prostate cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of different LH-like hormones, such as hCG, PMSG/equine (e) CG, ovine (o) LH, eLH, and rat (r) LH, to bind to and stimulate steroidogenesis in two types of rat gonadal cells was studied under the same experimental conditions. In both Leydig and granulosa cells, the maximal steroidogenic responses elicited by optimal doses of different LHs present during a 2-h incubation were comparable. However, if the cells were exposed to the different LHs for a brief period and then subjected to interference with hormone action by removing the unbound hormone from the medium by washing or adding specific antisera, differences were observed in the amount of steroid produced during subsequent incubation in hormone-free medium. Thus, in the case of hCG, either of these procedures carried out at 15 or 30 min of incubation had little inhibitory effect on the amount of steroid produced at 2 h, the latter being similar to that produced by cells incubated in the continued presence of hCG for 2 h. With eCG and rLH, the effect was dramatic, in that there was a total inhibition of subsequent steroidogenic response. In cells exposed to eLH and oLH, inhibition of subsequent steroidogenesis due to either removal of the free-hormone or addition of specific antisera at 15 or 30 min was only partial. Although all of the antisera used were equally effective in inhibiting the steroidogenic response to respective gonadotropins when added along with hormones at the beginning of incubation, differences were observed in the degree of inhibition of this response when the same antisera were added at later times of incubation. Thus, when antisera were added 60 min after the hormone, the inhibition of steroidogenesis was total (100%) for eCG, partial (10–40%) for eLH and oLH, and totally lacking in cells treated with hCG. From this, it appears that hCG bound to the receptor probably becomes unavailable for binding to its antibody with time, while in the case of eCG and other LHs used, the antibody can still inhibit the biological activity of the hormone. Studies with 125I-labeled hormones further supported the conclusion that hCG differs from all other LHs in being most tightly bound and, hence, least dissociable, while eCG and rLH dissociate most readily; oLH and eLH can be placed in between these hormones in the extent of their dissociability. (Endocrinology 116: 597–603,1985)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In higher primates, increased circulating follicle-stimulating hormone (FSH) levels seen during late menstrual cycle and during menstruation has been suggested to be necessary for initiation of follicular growth, recruitment of follicles and eventually culminating in ovulation of a single follicle. With a view to establish the dynamics of circulating FSH secretion with that of inhibin A (INH A) and progesterone (P-4)secretions during the menstrual cycle, blood was collected daily from bonnet monkeys beginning day 1 of the menstrual cycle up to 35 days. Serum INH A levels were low during early follicular phase, increased significantly coinciding with the mid cycle luteinizing hormone (LH) surge to reach maximal levels during the mid luteal phase before declining at the late luteal phase, essentially paralleling the pattern Of P-4 secretion seen throughout the luteal phase. Circulating FSH levels were low during early and mid luteal phases, but progressively increased during the late luteal phase and remained high for few days after the onset of menses. In another experiment, lutectomy performed during the mid luteal phase resulted in significant decrease in INH A concentration within 2 hr (58.3 +/- 2 vs. 27.3 +/- 3 pg/mL), and a 2- to 3-fold rise in circulating FSH levels by 24 hr (0.20 +/- 0.02 vs. 0.53 +/- 0.14 ng/mL) that remained high until 48 hr postlutectomy. Systemic administration of Cetrorelix (150 mu g/kg body weight), a gonadotropin releasing hormone receptor antagonist, at mid luteal phase in monkeys led to suppression of serum INH A and P-4 concentrations 24 hr post treatment, but circulating FSH levels did not change. Administration of exogenous LH, but not FSH, significantly increased INH A concentration. The results taken together suggest a tight coupling between LH and INH A secretion and that INH A is largely responsible for maintenance of low FSH concentration seen during the luteal phase. Am. J. Primatol. 71:817-824, 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The keto-enol type tautomerism in anti-thyroid drugs and their selenium analogues are described. The commonly used anti-thyroid drug methimazole exists predominantly in its thione form, whereas its selenium analogue exists in a zwitterionic form. To understand the effect of thione/thiol and selone/selenol tautomerism on the inhibition of peroxidase-catalysed reactions, we have synthesized some thiones and selones in which the formation of thiol/selenol forms are blocked by different substituents. These compounds were synthesized by a carbene route utilizing an imidazolium salt. The crystal structures of these compounds reveal that the C=Se bonds in the selones are more polarized than the C=S bonds in the corresponding thiones. The structures of selones were studied in solution by NMR spectroscopy and the 77Se NMR chemical shifts for the selones show large upfield shifts in the signals, confirming their zwitterionic structures in solution. The inhibition of lactoperoxidase by the synthetic thiones indicates that the presence of a free N-H moiety is essential for an efficient inhibition. In contrast, such moiety is not required for an inhibition by the selenium compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The methylotrophic yeast Pichia pastoris is widely used for the production of recombinant glycoproteins. With the aim to generate biologically active 15N-labeled glycohormones for conformational studies focused on the unravelling of the NMR structures in solution, the P. pastoris strains GS115 and X-33 were explored for the expression of human chorionic gonadotropin (phCG) and human follicle-stimulating hormone (phFSH). In agreement with recent investigations on the N-glycosylation of phCG, produced in P. pastoris GS115, using ammonia/glycerol-methanol as nitrogen/carbon sources, the N-glycosylation pattern of phCG, synthesized using NH4Cl/glucose–glycerol–methanol, comprised neutral and charged, phosphorylated high-mannose-type N-glycans (Man8–15GlcNAc2). However, the changed culturing protocol led to much higher amounts of glycoprotein material, which is of importance for an economical realistic approach of the aimed NMR research. In the context of these studies, attention was also paid to the site specific N-glycosylation in phCG produced in P. pastoris GS115. In contrast to the rather simple N-glycosylation pattern of phCG expressed in the GS115 strain, phCG and phFSH expressed in the X-33 strain revealed, besides neutral high-mannose-type N-glycans, also high concentrations of neutral hypermannose-type N-glycans (Manup-to-30GlcNAc2). The latter finding made the X-33 strain not very suitable for generating 15N-labeled material. Therefore, 15N-phCG was expressed in the GS115 strain using the new optimized protocol. The 15N-enrichment was evaluated by 15N-HSQC NMR spectroscopy and GLC-EI/MS. Circular dichroism studies indicated that 15N-phCG/GS115 had the same folding as urinary hCG. Furthermore, 15N-phCG/GS115 was found to be similar to the unlabeled protein in every respect as judged by radioimmunoassay, radioreceptor assays, and in vitro bioassays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The in vitro incorporation of [3H]uridine into RNA and [3H]leucine into protein in slices of porcine thyroid was studied. Thyrotropin (10-500 mU/ml of medium), when added with [3H]uridine, inhibited incorporation into RNA, but as little as 10 mU of thyrotropin per ml stimulated incorporation of [3H]orotic acid into RNA. Uridine kinase (EC 2.7.1.48) was found to be inhibited in slices incubated with thyrotropin whereas UMP 5′ nucleotidase (EC 2.1.3.5) was not. Preincubation of slices with thyrotropin (5-50 mU/ml) led to enhanced incorporation of subsequently added [3H]uridine and [3H]leucine. When slices were preincubated with long-acting thyroid stimulator-IgG (2.5 or 5 mg per ml of medium) incorporation of [3H]uridine and [3H]leucine was similarly enhanced, with the smaller concentration being more effective. Without preincubation these stimulatory effects were mimicked by 1 mM dibutyryl 3′,5′-AMP and, to a lesser extent, 1 mM 3′,5′-AMP. AMP and ATP also stimulated [3H]uridine incorporation in this system but only after more prolonged periods of incubation than were required for the other nucleotides. RNA polymerase (EC 2.7.7.6) activity measured in isolated thyroid nuclei had two components, one Mg2+-stimulated and the other requ ring Mn2+ and high salt content [0.4 M (NH4)2SO4]. These activities, and particularly the former, were enhanced if thyroid slices were incubated with thyrotropin (5-100 mU/ml of medium), 2.5 mg or 5.0 mg of long-acting thyroid stimulator-IgG per ml, or 1 mM dibutyryl 3′,5′-AMP, before isolatior of the nuclei and measurement of enzyme activities; 1 mM AMP, ADP, or 2′,3′-GMP had no influence. Added directly to the nuclei, thyrotropin, long-acting thyroid stimulator-IgG, and dibutyryl 3′,5′-AMP had no effect on RNA polymerase activities. These data are seen as affording evidence for mediation by 3′,5′-AMP of effects of thyrotropin and long-acting thyroid stimulator on thyroid RNA and protein synthesis, at least in part through an indirect stimulation of nuclear RNA polymerase activities.