5 resultados para same-sex domestic violence

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organisms quickly learn about their surroundings and display synaptic plasticity which is thought to be critical for their survival. For example, fruit flies Drosophila melanogaster exposed to highly enriched social environment are found to show increased synaptic connections and a corresponding increase in sleep. Here we asked if social environment comprising a pair of same-sex individuals could enhance sleep in the participating individuals. To study this, we maintained individuals of D. melanogaster in same-sex pairs for a period of 1 to 4 days, and after separation, monitored sleep of the previously socialized and solitary individuals under similar conditions. Males maintained in pairs for 3 or more days were found to sleep significantly more during daytime and showed a tendency to fall asleep sooner as compared to solitary controls (both measures together are henceforth referred to as ``sleep-enhancement''). This sleep phenotype is not strain-specific as it is observed in males from three different ``wild type'' strains of D. melanogaster. Previous studies on social interaction mediated sleep-enhancement presumed `waking experience' during the interaction to be the primary underlying cause; however, we found sleep-enhancement to occur without any significant increase in wakefulness. Furthermore, while sleep-enhancement due to group-wise social interaction requires Pigment Dispersing Factor (PDF) positive neurons; PDF positive and CRYPTOCHROME (CRY) positive circadian clock neurons and the core circadian clock genes are not required for sleep-enhancement to occur when males interact in pairs. Pair-wise social interaction mediated sleep-enhancement requires dopamine and olfactory signaling, while visual and gustatory signaling systems seem to be dispensable. These results suggest that socialization alone (without any change in wakefulness) is sufficient to cause sleep-enhancement in fruit fly D. melanogaster males, and that its neuronal control is context-specific.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Improving access to safe drinking water can result in multi-dimensional impacts on people's livelihood. This has been aptly reflected in the Millennium Development Goals (MDG) as one of the major objectives. Despite the availability of diverse and complex set of technologies for water purification, pragmatic and cost-effective use of the same is impeding the use of available sources of water. Hence, in country like India simple low-energy technologies such as solar still are likely to succeed. Solar stills would suffice the basic minimum drinking water requirements of man. Solar stills use sunlight, to kill or inactivate many, if not all, of the pathogens found in water. This paper provides an integrated assessment of the suitability of domestic solar still as a viable safe water technology for India. Also an attempt has been made to critically assess the operational feasibility and costs incurred for using this technology in rural India.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolutionary function of X chromosome inactivation is thought to be dosage compensation. However, there is, at present, little evidence to suggest that most X chromosome-linked genes require such compensation. Another view--that X chromosome inactivation may be related to sex determination--is examined here. Consider a hypothetical DNA sequence regulating a major structural gene concerned with the determination of maleness. If this regulatory sequence occurs in both X and Y chromosomes and if its copy number in the Y chromosome is significantly greater than in the X chromosome, then the male-determining properties of the Y chromosome could be attributed to this higher copy number. On the other hand, if the Y chromosome has the same copy number of this sequence as the X chromosome, it is difficult to see how determination of two sexes would occur under such circumstances because XX and XY genomes would then be indistinguishable in this regard. Such a situation seems to occur in the human species with respect to the banded krait minor satellite, a repetitious DNA sequence associated with sex determination. This apparent difficulty may be resolved if X chromosome inactivation renders regulatory as well as structural genes nonfunctional and thereby brings about a significant reduction in the effective copy number of X chromosome-linked DNA sequences concerned with sex determination. It is suggested that X chromosome inactivation brings about, in this manner, a critical inequality between XX and XY embryos and that sex determination in humans is a consequence of this inequality. An analogous situation appears to exist in certain insects in which inactivation of a haploid set of chromosomes (and presumably, therefore, a 50% reduction in the effective copy number of most genes) is associated with maleness. If this line of reasoning is correct, it would suggest that sex determination may be the primary function of X chromosome inactivation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differential organisation of homologous chromosomes is related to both sex determination and genomic imprinting in coccid insects, the mealybugs. We report here the identification of two middle repetitive sequences that are differentially organised between the two sexes and also within the same diploid nucleus. These two sequences form a part of the male-specific nuclease-resistant chromatin (NRC) fraction of a mealybug Planococcus lilacinus. To understand the phenomenon of differential organisation we have analysed the components of NRC by cloning the DNA sequences present, deciphering their primary sequence, nucleosomal organisation, genomic distribution and cytological localisation, Our observations suggest that the middle repetitive sequences within NRC are functionally significant and we discuss their probable involvement in male-specific chromatin organisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insects of the order Hemiptera (true bugs) use a wide range of mechanisms of sex determination, including genetic sex determination, paternal genome elimination, and haplodiploidy. Genetic sex determination, the prevalent mode, is generally controlled by a pair of XY sex chromosomes or by an XX/XO system, but different configurations that include additional sex chromosomes are also present. Although this diversity of sex determining systems has been extensively studied at the cytogenetic level, only the X chromosome of the model pea aphid Acyrthosiphon pisum has been analyzed at the genomic level, and little is known about X chromosome biology in the rest of the order. In this study, we take advantage of published DNA- and RNA-seq data from three additional Hemiptera species to perform a comparative analysis of the gene content and expression of the X chromosome throughout this clade. We find that, despite showing evidence of dosage compensation, the X chromosomes of these species show female-biased expression, and a deficit of male-biased genes, in direct contrast to the pea aphid X. We further detect an excess of shared gene content between these very distant species, suggesting that despite the diversity of sex determining systems, the same chromosomal element is used as the X throughout a large portion of the order.