39 resultados para diagnostics

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low temperature polyol process, based on glycolaldehyde mediated partial reduction of FeCl3 center dot 6H(2)O at 120 degrees C in the presence of sodium acetate as an alkali source and 2,2'-(ethylenedioxy)-bis-(ethylamine) as an electrostatic stabilizer has been used for the gram-scale preparation of biocompatible, water-dispersible, amine functionalized magnetite nanoparticles (MNPs) with an average diameter of 6 +/- 0.75 nm. With a reasonably high magnetization (37.8 e.m.u.) and amine groups on the outer surface of the nanoparticles, we demonstrated the magnetic separation and concentration implications of these ultrasmall particles in immunoassay. MRI studies indicated that these nanoparticles had the desired relaxivity for T-2 contrast enhancement in vivo. In vitro biocompatibility, cell uptake and MR imaging studies established that these nanoparticles were safe in clinical dosages and by virtue of their ultrasmall sizes and positively charged surfaces could be easily internalized by cancer cells. All these positive attributes make these functional nanoparticles a promising platform for further in vitro and in vivo evaluations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fuzzy system is developed using a linearized performance model of the gas turbine engine for performing gas turbine fault isolation from noisy measurements. By using a priori information about measurement uncertainties and through design variable linking, the design of the fuzzy system is posed as an optimization problem with low number of design variables which can be solved using the genetic algorithm in considerably low amount of computer time. The faults modeled are module faults in five modules: fan, low pressure compressor, high pressure compressor, high pressure turbine and low pressure turbine. The measurements used are deviations in exhaust gas temperature, low rotor speed, high rotor speed and fuel flow from a base line 'good engine'. The genetic fuzzy system (GFS) allows rapid development of the rule base if the fault signatures and measurement uncertainties change which happens for different engines and airlines. In addition, the genetic fuzzy system reduces the human effort needed in the trial and error process used to design the fuzzy system and makes the development of such a system easier and faster. A radial basis function neural network (RBFNN) is also used to preprocess the measurements before fault isolation. The RBFNN shows significant noise reduction and when combined with the GFS leads to a diagnostic system that is highly robust to the presence of noise in data. Showing the advantage of using a soft computing approach for gas turbine diagnostics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of the high pressure oxygen-sputtering plasma in the pressure range 0.8–2.4 mbar have been studied using the Langmuir probe technique. The variation in plasma parameters such as positive ion density, electron density, mean electron energy and floating potential with pressure and temperature has been investigated. It has been observed that the positive ion density increases at high substrate temperatures whereas the negative ion density decreases. The study of the variation in mean electron energy and floating potential also indicated the possibility that the number of negative ions is less when the substrates are at elevated temperatures. Since the negative ions are supposed to cause re-sputtering and make the films off-stoichiometric, the reduction in the negative ion density as observed at elevated substrate temperatures is better suited for depositing stoichiometric YBa2Cu3O7−δ superconducting thin films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measured health signals incorporate significant details about any malfunction in a gas turbine. The attenuation of noise and removal of outliers from these health signals while preserving important features is an important problem in gas turbine diagnostics. The measured health signals are a time series of sensor measurements such as the low rotor speed, high rotor speed, fuel flow, and exhaust gas temperature in a gas turbine. In this article, a comparative study is done by varying the window length of acausal and unsymmetrical weighted recursive median filters and numerical results for error minimization are obtained. It is found that optimal filters exist, which can be used for engines where data are available slowly (three-point filter) and rapidly (seven-point filter). These smoothing filters are proposed as preprocessors of measurement delta signals before subjecting them to fault detection and isolation algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method, system, and computer program product for fault data correlation in a diagnostic system are provided. The method includes receiving the fault data including a plurality of faults collected over a period of time, and identifying a plurality of episodes within the fault data, where each episode includes a sequence of the faults. The method further includes calculating a frequency of the episodes within the fault data, calculating a correlation confidence of the faults relative to the episodes as a function of the frequency of the episodes, and outputting a report of the faults with the correlation confidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper discusses a wave propagation based method for identifying the damages in an aircraft built up structural component such as delamination and skin-stiffener debonding. First, a spectral finite element mode l (SFEM) is developed for modeling wave propagation in general built-up structures by using the concept of assembling 2D spectral plate elements. The developed numerical model is validated using conventional 2-D FEM. Studies are performed to capture the mode coupling,that is, the flexural-axial coupling present in the wave responses. Lastly, the damages in these built up structures are then identified using the developed SFEM model and the measured responses using the concept Damage Force Indicator (DFI) technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sensitivity of combustion phasing and combustion descriptors to ignition timing, load and mixture quality on fuelling a multi-cylinder natural gas engine with bio-derived H-2 and CO rich syngas is addressed. While the descriptors for conventional fuels are well established and are in use for closed loop engine control, presence of H-2 in syngas potentially alters the mixture properties and hence combustion phasing, necessitating the current study. The ability of the descriptors to predict abnormal combustion, hitherto missing in the literature, is also addressed. Results from experiments using multi-cylinder engines and numerical studies using zero dimensional Wiebe function based simulation models are reported. For syngas with 20% H-2 and CO and 2% CH4 (producer gas), an ignition retard of 5 +/- 1 degrees was required compared to natural gas ignition timing to achieve peak load of 72.8 kWe. It is found that, for syngas, whose flammability limits are 0.42-1.93, the optimal engine operation was at an equivalence ratio of 1.12. The same methodology is extended to a two cylinder engine towards addressing the influence of syngas composition, especially H-2 fraction (varying from 13% to 37%), on the combustion phasing. The study confirms the utility of pressure trace derived combustion descriptors, except for the pressure trace first derivative, in describing the MBT operating condition of the engine when fuelled with an alternative fuel. Both experiments and analysis suggest most of the combustion descriptors to be independent of the engine load and mixture quality. A near linear relationship with ignition angle is observed. The general trend(s) of the combustion descriptors for syngas fuelled operation are similar to those of conventional fuels; the differences in sensitivity of the descriptors for syngas fuelled engine operation requires re-calibration of control logic for MBT conditions. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current work reports optical diagnostic measurements of fuel-air mixing and vortex structure in a single cavity trapped vortex combustor (TVC). Specifically, the mixture fraction using acetone PLIF technique in the non-reacting flow, and PIV measurements in the reacting flow are reported for the first time in trapped vortex combustors. The fuel-air momentum flux ratio, where the air momentum corresponds to that entering the cavity through a specially-incorporated flow guide vane, is used to characterize the mixing. The acetone PLIF experiments show that at high momentum flux ratios, the fuel-air mixing in the cavity is very minimal and is enhanced as the momentum flux ratio reduces, due to a favourable vortex formation in the cavity. Stoichiometric mixture fraction surfaces show that the mixing causes the reaction surfaces to shift from non-premixed to partially-premixed stratified mixtures. PIV measurements conducted in the non-reacting flow in the cavity further reinforce this observation. The scalar dissipation rates of mixture fraction were compared with the contours of RMS of fluctuating velocity and showed very good agreement. The regions of maximum mixing are observed to be along the fuel air interface. Reacting flow Ply measurements which differ substantially from the non-reacting cases primarily because of the heat release from combustion and the resulting gas expansion show that the vortex is displaced from the centre of the cavity towards the guide vane. Overall, the measurements show interesting features of the flow including the presence of the dual cavity structure and lead to a clear understanding of the underlying physics of the cavity flow highlighting the importance of the fuel-air momentum ratio parameter. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current work reports quantitative OH species concentration in the cavity of a trapped vortex combustor (TVC) in the context of mixing and flame stabilization studies using both syngas and methane fuels. Planar laser induced fluorescence (PLIF) measurements of OH radical obtained using a Nd: YAG pumped dye laser are quantified using a flat flame McKenna burner. The momentum flux ratio (MFR), defined as the ratio of the cavity fuel jet momentum to that of the guide vane air stream, is observed to be a key governing parameter. At high MFRs similar to 4.5, the flame front is observed to form at the interface of the fuel jet and the air jet stream. This is substantiated by velocity vector field measurements. For syngas, as the MFR is lowered to similar to 0.3, the fuel-air mixing increases and a flame front is formed at the bottom and downstream edge of the cavity where a stratified charge is present. This trend is observed for different velocities at similar equivalence ratios. In case of methane combustion in the cavity, where the MFRs employed are extremely low at similar to 0.01, a different mechanism is observed. A fuel-rich mixture is now observed at the center of the cavity and this mixture undergoes combustion. On further increase of the cavity equivalence ratio, the rich mixture exceeds the flammability limit and forms a thin reaction zone at the interface with air stream. As a consequence, a shear layer flame at the top of the cavity interface with the mainstream is also observed. The equivalence ratio in the cavity also determines the combustion characteristics in the case of fuel-air mixtures that are formed as a result of the mixing. Overall, flame stabilization mechanisms have been proposed, which account for the wide range of MFRs and premixing in the mainstream as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modeling and analysis of wave propagation in elastic solids undergoing damage and growth process are reported in this paper. Two types of diagnostic problems, (1) the propagation of waves in the presence of a slow growth process and (2) the propagation of waves in the presence of a fast growth process, are considered. The proposed model employs a slow and a fast time scale and a homogenization technique in the wavelength scale. A detailed analysis of wave dispersion is carried out. A spectral analysis reveals certain low-frequency bands, where the interaction between the wave and the growth process produces acoustic metamaterial-like behavior. Various practical issues in designing an efficient method of acousto-ultrasonic wave based diagnostics of the growth process are discussed. Diagnostics of isotropic damage in a ductile or quasi-brittle solid by using a micro-second pulsating signal is considered for computer simulations, which is to illustrate the practical application of the proposed modeling and analysis. The simulated results explain how an estimate of signal spreading can be effectively employed to detect the presence of a steady-state damage or the saturation of a process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A defect-selective photothermal imaging system for the diagnostics of optical coatings is demonstrated. The instrument has been optimized for pump and probe parameters, detector performance, and signal processing algorithm. The imager is capable of mapping purely optical or thermal defects efficiently in coatings of low damage threshold and low absorbance. Detailed mapping of minor inhomogeneities at low pump power has been achieved through the simultaneous action of a low-noise fiber optic photothermal beam defection sensor and a common-mode-rejection demodulation (CMRD) technique. The linearity and sensitivity of the sensor have been examined theoretically and experimentally, and the signal to noise ratio improvement factor is found to be about 110 compared to a conventional bicell photodiode. The scanner is so designed that mapping of static or shock sensitive samples is possible. In the case of a sample with absolute absorptance of 3.8 x 10(-4), a change in absorptance of about 0.005 x 10(-4) has been detected without ambiguity, ensuring a contrast parameter of 760. This is about 1085% improvement over the conventional approach containing a bicell photodiode, at the same pump power. The merits of the system have been demonstrated by mapping two intentionally created damage sites in a MgF2 coating on fused silica at different excitation powers. Amplitude and phase maps were recorded for thermally thin and thick cases, and the results are compared to demonstrate a case which, in conventional imaging, would lead to a deceptive conclusion regarding the type and location of the damage. Also, a residual damage profile created by long term irradiation with high pump power density has been depicted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymerized carbon nanotubes (CNTs) are promising materials for polymer-based electronics and electro-mechanical sensors. The advantage of having a polymer nanolayer on CNTs widens the scope for functionalizing it in various ways for polymer electronic devices. However, in this paper, we show for the first time experimentally that, due to a resistive polymer layer having carbon nanoparticle inclusions and polymerized carbon nanotubes, an interesting dynamics can be exploited. We first show analytically that the relative change in the resistance of a single isolated semiconductive nanotube is directly proportional to the axial and torsional dynamic strains, when the strains are small, whereas, in polymerized CNTs, the viscoelasticity of the polymer and its effective electrical polarization give rise to nonlinear effects as a function of frequency and bias voltage. A simplified formula is derived to account for these effects and validated in the light of experimental results. CNT–polymer-based channels have been fabricated on a PZT substrate. Strain sensing performance of such a one-dimensional channel structure is reported. For a single frequency modulated sine pulse as input, which is common in elastic and acoustic wave-based diagnostics, imaging, microwave devices, energy harvesting, etc, the performance of the fabricated channel has been found to be promising.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prognosis of patients with glioblastoma, the most malignant adult glial brain tumor, remains poor in spite of advances in treatment procedures, including surgical resection, irradiation and chemotherapy.Genetic heterogeneity of glioblastoma warrants extensive studies in order to gain a thorough understanding of the biology of this tumor. While there have been several studies of global transcript profiling of glioma with the identification of gene signatures for diagnosis and disease management, translation into clinics is yet to happen. Serum biomarkers have the potential to revolutionize the process of cancer diagnosis, grading, prognostication and treatment response monitoring. Besides having the advantage that serum can be obtained through a less invasive procedure, it contains molecules at an extraordinary dynamic range of ten orders of magnitude in terms of their concentrations. While the conventional methods, such as 2DE, have been in use for many years, the ability to identify the proteins through mass spectrometry techniques such as MALDI-TOF led to an explosion of interest in proteomics. Relatively new high-throughput proteomics methods such as SELDI-TOF and protein microarrays are expected to hasten the process of serum biomarker discovery. This review will highlight the recent advances in the proteomics platform in discovering serum biomarkers and the current status of glioma serum markers. We aim to provide the principles and potential of the latest proteomic approaches and their applications in the biomarker discovery process. Besides providing a comprehensive list of available serum biomarkers of glioma, we will also propose how these markers will revolutionize the clinical management of glioma patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biosensors have gained immense acceptance in the field of medical diagnostics, besides environmental, food safety and biodefence applications due to its attributes of real-time and rapid response. This synergistic combination of biotechnology and microelectronics comprises a biological recognition element coupled with a compatible transducer device. Diabetes is a disease of major concern since the ratio of world population suffering from it is increasing at an alarming rate and therefore the need for development of accurate and stable glucose biosensors is evident. There are many commercial glucose biosensors available yet some limitations need attention. This review presents a detailed account of the polypyrrole based amperometric glucose biosensors. The polymer polypyrrole is used extensively as a matrix for immobilization of glucose oxidase enzyme owing to its favourable features such as stability under ambient conditions, conductivity that allows it to be used as an electron relay, ability to be polymerized under neutral and aqueous mild conditions, and more. The simple one-step electrodeposition on the electrode surface allows easy entrapment of the enzyme. The review is structured into three categories (a) the first-stage biosensors: which report the studies from the inception of use of polypyrrole in glucose biosensors during which time the role of the polymer and the use of mediators was established. This period saw extensive work by two separate groups of Schuhmann and Koopal who contributed a great deal in understanding the electron transfer pathways in polypyrrole based glucose biosensors, (b) the second-stage biosensors: which highlight the shift of polypyrrole from a conventional matrix to composite matrices with extensive use of mediators focused at improving the selectivity of response, and (c) third-stage biosensors: the remarkable properties of nanoparticles and carbon nanotubes and their outstanding ability to mediate electrontransfers have seen their indispensable use in conjugation with polypyrrole for development of glucose biosensors with improved sensitivity and stability characteristics which is accounted in the review, which thus traces the evolution of polypyrrole from a conventional matrix, to composites and thence to the form of nanotube arrays, with the objective of addressing the vital issue of diabetes management through the development of stable and reliable glucose biosensors.