6 resultados para TERMINOLOGY

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparison is made between German and Russian terminological derivations in chemistry and the methods used by Germans and Russians to solve problems related to the fornlrrtion of scientific words. A study of this comparison, it is believed, can help us in the development of scientific words in Indian languages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical examination of orthorhombic CsIO4 crystals has revealed the existence of ferroelastic domains. That they are ferroelastic domains was confirmed by subjecting the crystal to external stresses. Our results strongly suggest that the transition at 150°C is of the species 4/mmmFmmm in Aim's terminology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the �Single Network Adaptive Critic (SNAC)� is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we consider the problem of scheduling expression trees on delayed-load architectures. The problem tackled here takes root from the one considered in [Proceedings of the ACM SIGPLAN '91 Conf. on Programming Language Design and Implementation, 1991. p. 256] in which the leaves of the expression trees all refer to memory locations. A generalization of this involves the situation in which the trees may contain register variables, with the registers being used only at the leaves. Solutions to this generalization are given in [ACM Trans. Prog. Lang. Syst. 17 (1995) 740, Microproc. Microprog. 40 (1994) 577]. This paper considers the most general case in which the registers are reusable. This problem is tackled in [Comput. Lang, 21 (1995) 49] which gives an approximate solution to the problem under certain assumptions about the contiguity of the evaluation order: Here we propose an optimal solution (which may involve even a non-contiguous evaluation of the tree). The schedule generated by the algorithm given in this paper is optimal in the sense that it is an interlock-free schedule which uses the minimum number of registers required. An extension to the algorithm incorporates spilling. The problem as stated in this paper is an instruction scheduling problem. However, the problem could also be rephrased as an operations research problem with a difference in terminology. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of semantic interoperability arises while integrating applications in different task domains across the product life cycle. A new shape-function-relationship (SFR) framework is proposed as a taxonomy based on which an ontology is developed. Ontology based on the SFR framework, that captures explicit definition of terminology and knowledge relationships in terms of shape, function and relationship descriptors, offers an attractive approach for solving semantic interoperability issue. Since all instances of terms are based on single taxonomy with a formal classification, mapping of terms requires a simple check on the attributes used in the classification. As a preliminary study, the framework is used to develop ontology of terms used in the aero-engine domain and the ontology is used to resolve the semantic interoperability problem in the integration of design and maintenance. Since the framework allows a single term to have multiple classifications, handling context dependent usage of terms becomes possible. Automating the classification of terms and establishing the completeness of the classification scheme are being addressed presently.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moore's Law has driven the semiconductor revolution enabling over four decades of scaling in frequency, size, complexity, and power. However, the limits of physics are preventing further scaling of speed, forcing a paradigm shift towards multicore computing and parallelization. In effect, the system is taking over the role that the single CPU was playing: high-speed signals running through chips but also packages and boards connect ever more complex systems. High-speed signals making their way through the entire system cause new challenges in the design of computing hardware. Inductance, phase shifts and velocity of light effects, material resonances, and wave behavior become not only prevalent but need to be calculated accurately and rapidly to enable short design cycle times. In essence, to continue scaling with Moore's Law requires the incorporation of Maxwell's equations in the design process. Incorporating Maxwell's equations into the design flow is only possible through the combined power that new algorithms, parallelization and high-speed computing provide. At the same time, incorporation of Maxwell-based models into circuit and system-level simulation presents a massive accuracy, passivity, and scalability challenge. In this tutorial, we navigate through the often confusing terminology and concepts behind field solvers, show how advances in field solvers enable integration into EDA flows, present novel methods for model generation and passivity assurance in large systems, and demonstrate the power of cloud computing in enabling the next generation of scalable Maxwell solvers and the next generation of Moore's Law scaling of systems. We intend to show the truly symbiotic growing relationship between Maxwell and Moore!