3 resultados para Pulmonary and Respiratory Medicine

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuberculosis continues to kill 1.4 million people annually. During the past 5 years, an alarming increase in the number of patients with multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis has been noted, particularly in eastern Europe, Asia, and southern Africa. Treatment outcomes with available treatment regimens for drug-resistant tuberculosis are poor. Although substantial progress in drug development for tuberculosis has been made, scientific progress towards development of interventions for prevention and improvement of drug treatment outcomes have lagged behind. Innovative interventions are therefore needed to combat the growing pandemic of multidrug-resistant and extensively drug-resistant tuberculosis. Novel adjunct treatments are needed to accomplish improved cure rates for multidrug-resistant and extensively drug-resistant tuberculosis. A novel, safe, widely applicable, and more effective vaccine against tuberculosis is also desperately sought to achieve disease control. The quest to develop a universally protective vaccine for tuberculosis continues. So far, research and development of tuberculosis vaccines has resulted in almost 20 candidates at different stages of the clinical trial pipeline. Host-directed therapies are now being developed to refocus the anti-Mycobacterium tuberculosis-directed immune responses towards the host; a strategy that could be especially beneficial for patients with multidrug-resistant tuberculosis or extensively drug-resistant tuberculosis. As we are running short of canonical tuberculosis drugs, more attention should be given to host-directed preventive and therapeutic intervention measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure of oral cavity to areca nut is associated with several pathological conditions including oral submucous fibrosis (OSF). Histopathologically OSF is characterized by epithelial atrophy, chronic inflammation, juxtaepithelial hyalinization, leading to fibrosis of submucosal tissue and affects 0.5% of the population in the Indian subcontinent. As the molecular mechanisms leading to atrophied epithelium and fibrosis are poorly understood, we studied areca nut actions on human keratinocyte and gingival fibroblast cells. Areca nut water extract (ANW) was cytotoxic to epithelial cells and had a pro-proliferative effect on fibroblasts. This opposite effect of ANW on epithelial and fibroblast cells was intriguing but reflects the OSF histopathology such as epithelial atrophy and proliferation of fibroblasts. We demonstrate that the pro-proliferative effects of ANW on fibroblasts are dependent on insulin-like growth factor signalling while the cytotoxic effects on keratinocytes are dependent on the generation of reactive oxygen species. Treatment of keratinocytes with arecoline which is a component of ANW along with copper resulted in enhanced cytotoxicity which becomes comparable to IC50 of ANW. Furthermore, studies using cyclic voltammetry, mass spectrometry and plasmid cleavage assay suggested that the presence of arecoline increases oxidation reduction potential of copper leading to enhanced cleavage of DNA which could generate an apoptotic response. Terminal deoxynucleotidyl transferase dUTP Nick End Labeling assay and Ki-67 index of OSF tissue sections suggested epithelial apoptosis, which could be responsible for the atrophy of OSF epithelium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanomechanical intervention through electroactuation is an effective strategy to guide stem cell differentiation for tissue engineering and regenerative medicine. In the present study, we elucidate that physical forces exerted by electroactuated gold nanoparticles (GNPs) have a strong influence in regulating the lineage commitment of human mesenchymal stem cells (hMSCs). A novel platform that combines intracellular and extracellular GNPs as nano-manipulators was designed to trigger neurogenic/cardiomyogenic differentiation in hMSCs, in electric field stimulated culture condition. In order to mimic the native microenvironment of nerve and cardiac tissues, hMSCs were treated with physiologically relevant direct current electric field (DC EF) or pulsed electric field (PEF) stimuli, respectively. When exposed to regular intermittent cycles of DC EF stimuli, majority of the GNP actuated hMSCs acquired longer filopodial extensions with multiple branch-points possessing neural-like architecture. Such morphological changes were consistent with higher mRNA expression level for neural-specific markers. On the other hand, PEF elicited cardiomyogenic differentiation, which is commensurate with the tubelike morphological alterations along with the upregulation of cardiac specific markers. The observed effect was significantly promoted even by intracellular actuation and was found to be substrate independent. Further, we have substantiated the participation of oxidative signaling, G0/G1 cell cycle arrest and intracellular calcium Ca2+] elevation as the key upstream regulators dictating GNP assisted hMSC differentiation. Thus, by adopting dual stimulation protocols, we could successfully divert the DC EF exposed cells to differentiate predominantly into neural-like cells and PEF treated cells into cardiomyogenic-like cells, via nanoactuation of GNPs. Such a novel multifaceted approach can be exploited to combat tissue loss following brain injury or heart failure. (C) 2015 Elsevier Ltd. All rights reserved.