23 resultados para Mechanical engineering

em Indian Institute of Science - Bangalore - Índia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanoindentation is a technique for measuring the elastic modulus and hardness of small amounts of materials. This method, which has been used extensively for characterizing metallic and inorganic solids, is now being applied to organic and metalorganic crystals, and has also become relevant to the subject of crystal engineering, which is concerned with the design of molecular solids with desired properties and functions. Through nanoindentation it is possible to correlate molecular-level properties such as crystal packing, interaction characteristics, and the inherent anisotropy with micro/macroscopic events such as desolvation, domain coexistence, layer migration, polymorphism, and solid-state reactivity. Recent developments and exciting opportunities in this area are highlighted in this Minireview.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A technique to quantify in real time the microstructural changes occurring during mechanical nanoscale fatigue of ultrathin surface coatings has been developed. Cyclic nanoscale loading, with amplitudes less than 100 nm, is achieved with a mechanical probe miniaturized to fit inside a transmission electron microscope (TEM). The TEM tribological probe can be used for nanofriction and nanofatigue testing, with 3D control of the loading direction and simultaneous TEM imaging of the nano-objects. It is demonstrated that fracture of 10-20 nm thick amorphous carbon films on sharp gold asperities, by a single nanoscale shear impact, results in the formation of < 10 nm diameter amorphous carbon filaments. Failure of the same carbon films after cyclic nanofatigue, however, results in the formation of carbon nanostructures with a significant degree of graphitic ordering, including a carbon onion.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An engineering analysis of the design of two-wheel bullock carts has been carried out with the aid of a mathematical model. Non-dimensional expressions for the pull and the neck load have been developed. In the first instance, the cart is assumed to be cruising at constant velocity on a terrain with the effective coefficient of rolling friction varying over a wide range (0.001 to 0.5) and the gradient varying between +0.2 to −0.2. Subsequently, the effect of inertia force due to an acceleration parallel to the ground is studied. In the light of this analysis, two modifications to the design of the cart have been proposed and the relative merits of the current designs and the proposed designs are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Seizure resistance of several cast aluminium base alloys has been examined using a standard Hohman Wear Tester. Disks of aluminium base alloys were run against a standard aluminium 12% silicon base alloy. The seizure resistance of the alloys (as measured by the lowest bearing parameter reached before seizure) increased with hardness, yield and tensile strength. In Al-Si-Ni alloys where silicon and nickel have little solid solubility in α-aluminium and Si and Ni Al3 hard phases are formed, the minimum bearing parameter decreased with the parameter V (The product of vol. % of hard phases in the disk and the shoe). Apparently the silicon and NiAl3 particles provided discontinuities in the matrix and reduced the probability (1 − V) of the α-aluminium phase in the disk coming into contact with the α-aluminium phase in the shoe. The copper and magnesium containing Al-Si-Ni alloys with lesser volumes of hard phases exhibit considerably better seizure resistance indicating that a slight increase in the solute content or the hardness of the primary α-phase leads to a considerable increase in seizure resistance. Deformation during wear and seizure leads to fragmentation of the original hard particles into considerably smaller particles uniformly dispersed in the deformed α-aluminium matrix.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Al-10.98 pct Si-4.9 pct Ni ternary eutectic alloy was unidirectionally solidified at growth rates from 1.39μm/sec to 6.95μm/sec. Binary Al-Ni and Al-Si eutectics prepared from the same purity metals were also solidified under similar conditions to characterize the growth conditions under the conditions of present study. NiAl3 phase appeared as fibers in the binary Al-Ni eutectic and silicon appeared as irregular plates in the binary Al-Si eutectic. However, in the ternary Al-Si-Ni eutectic alloy both NiAl3 and silicon phases appeared as irregular plates dispersed in α-Al phase, without any regular repctitive arrangement. The size and spacing of NiAl3 and Si platelets in cone shaped colonies decreased with an increase in the growth rate of the ternary eutectic. Examination of specimen quenched during unidirectional solidification indicated that the ternary eutectic grows with a non-planar interface with both Si and NiAl3 phases protruding into the liquid. It is concluded that it will be difficult to grow regular ternary eutectic structures even if only one phase has a high entropy of melting. The tensile strength and modulus of unidirectionally solidified Al-Si-Ni eutectic was lower than the chill cast alloys of the same composition, and decreased with a decrease in growth rate. Tensile modulus and strength of ternary Al-Si-Ni eutectic alloys was greater than binary Al-Si eutectic alloy under similar growth conditions, both in the chill cast and in unidirectionally solidified conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of creep on the vibrations of a single degree of freedom system subjected to combined random and deterministic excitation has been studied in this paper. The deterministic part of the excitation is assumed to be a sinusoidal function while the random part of the excitation is considered as a narrow band process with a central frequency equal to the frequency of sinusoidal part of the excitation. Creep, an energy absorbing process, introduces an equivalent damping into the system. A measure of this damping and the statistical properties of the response of the mechanical system have been derived.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents the results of an investigation on the efficacy of hybrid compression process for refrigerant HFC 134a in cooling applications. The conventional mechanical compression is supplemented by thermal compression using a string of adsorption compressors. Activated carbon is the adsorbent for the thermal compression segment. The alternatives of bottoming either mechanical or thermal compression stages are investigated. It is shown that almost 40% energy saving is realizable by carrying out a part of the compression in a thermal compressor compared to the case when the entire compression is carried out in a single-stage mechanical compressor. The hybrid compression is feasible even when low grade heat is available. Some performance indictors are defined and evaluated for various configurations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, the study of a third-order mechanical oscillator is presented by demonstrating its equivalence to the well-known R.C. multivibrator with two additional reactive elements. The conditions for the oscillator's possession of periodic solutions are presented. It is also shown that under certain conditions, the study of the given third-order autonomous system can be reduced to the study of an equivalent second-order, non-autonomous system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cast aluminium alloy mica particle composites of varying mica content were tested in tension, compression, and impact. With 2.2 percent mica (size range 40µm – 120µm) the tensile and compression strengths of aluminium alloy decreased by 56 and 22 percent, respectively. The corresponding decreases in percent elongation and percent reduction are 49 and 39 percent. Previous work [2] shows that despite this decrease in strength the composite with 2.5 percent mica and having an UTS of 15 kg/mm2 and compression strength of 28 kg/mm2 performs well as a bearing material under severe running conditions. The differences in strength characteristics of cast aluminium-mica particle composites between tension and compression suggests that, as in cast iron, expansion of voids at the matrix particle interface may be the guiding mechanism of the deformation. SEM studies show that on the tensile fractured specimen surface, there are large voids at the particle matrix interface.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cutting of Y2O3-doped TZP rods by a low-speed diamond saw introduces an unidentified, metastable phase X (x-ZrO2) coexisting with the tetragonal (t-ZrO2) and the monoclinic (m-ZrO2) phases initially present in the sample. Further mechanical deformation of the cut surface by indentation or polishing sustains the x-ZrO2. Chemical etching removes the x-ZrO2 and increases the m-ZrO2content.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Blocks of 3Y-TZP were indented with conical diamond indenters. indentation caused tetragonal to monoclinic phase transformation in a subsurface. Of the cracks generated in the subsurface, radial and lateral cracks can be accounted for by a continuum model of the indented subsurface, built using a combination of the Boussinesq and blister stress fields. Additional ring, median and cone cracks were also observed. It is hypothesized that the latter are motivated by the reduction in blister strength or residual energy brought about by the material damage caused by the phase transformation. This damage reduces the load bearing capacity of the material progressively with increasing normal load.

Relevância:

70.00% 70.00%

Publicador: