3 resultados para Lipolysis

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous work from our laboratory had demonstrated that deletion of TGL3 encoding the major yeast triacylglycerol (TAG) lipase resulted in decreased mobilization of TAG, a sporulation defect and a changed pattern of fatty acids, especially increased amounts of C22:0 and C26:0 very long chain fatty acids in the TAG fraction K. Athenstaedt and G. Daum, J. Biol. Chem. 278 (2003) 23317-23323]. To study a possible link between TAG lipolysis and membrane lipid biosynthesis, we carried out metabolic labeling experiments with wild type and deletion strains bearing defects in the three major yeast TAG lipases, Tgl3p, Tgl4p and Tgl5p. Using H-3]inositol. P-32]orthophosphate, 3H]palmitate and C-14]acetate as precursors for complex lipids we demonstrated that tgl mutants had a lower level of sphingolipids and glycerophospholipids than wild type. ESI-MS/MS analyses confirmed that TAG accumulation in these mutant cells resulted in reduced amounts of phospholipids and sphingolipids. In vitro and in vivo experiments revealed that TAG lipolysis markedly affected the metabolic flux of long chain fatty acids and very long chain fatty acids required for sphingolipid and glycerophospholipid synthesis. Activity and expression level of fatty acid elongases, Elo1p and Elo2p were enhanced as a consequence of reduced TAG lipolysis. Finally, the pattern of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine molecular species was altered in tgl deletion strain underlining the important role of TAG turnover in maintaining the pool size of these compounds and the remodeling of complex membrane lipids. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the yeast, mobilization of triacylglycerols (TAG) is facilitated by TGL3, TGL4 and TGL5 gene products. Interestingly, experiments using [32P] orthophosphate as a precursor for complex glycerophospholipids revealed that tgl mutants had a lower steady-state level of these membrane lipids. To understand a possible link between TAG lipolysis and phospholipid metabolism, we performed overexpression studies with Tgl3p and Tgl5p which clearly demonstrated that these two enzymes enhanced the level of phospholipids. Domains and motifs search analyses indicated that yeast TAG hydrolases posses a GXSXG lipase motif but also a HX4D acyltransferase motif. Purified Tgl3p and Tgl5p did not only exhibit TAG lipase activity but also catalyzed acyl-CoA dependent acylation of lyso-phosphatidylethanolamine and lyso-phosphatidic acid (LPA), respectively. Search for lipase/hydrolase homologues in the Arabidopsis thaliana genome led to the identification of At4g24160 which possess three motifs that are conserved across the plant species such as GXSXG motif, a HX4D motif and a probable lipid binding motif V(X)3HGF. Characterization of At4g24160 expressed in bacteria revealed that the presence of an acyl-CoA dependent LPA acyltransferase activity. In addition, the purified recombinant At4g24160 protein hydrolyzed both TAG and phosphatidylcholine. We hypothesize that the plant enzyme may be involved in membrane repair. In summary, our results indicate that these TAG lipases play a dual role and thereby contribute to both anabolic and catabolic processes in yeast and plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

H2O2, in addition to producing highly reactive molecules through hydroxyl radicals or peroxidase action, can exert a number of direct effects on cells, organelles and enzymes. The stimulations include glucose transport, glucose incorporation into glycogen, HMP shunt pathway, lipid synthesis, release of calcium from mitochondria and of arachidonate from phospholipids, poly ADP ribosylation, and insulin receptor tyrosine kinase and pyruvate dehydrogenase activities. The inactivations include glycolysis, lipolysis, reacylation of lysophospholipids, ATP synthesis, superoxide dismutase and protein kinase C. Damages to DNA and proteoglycan and general cytotoxicity possibly through oxygen radicals were also observed. A whole new range of effects will be opened by the finding that H2O2 can act as a signal transducer in oxidative stress by oxidizing a dithiol protein to disulphide form which then activates transcription of the stress inducible genes. Many of these direct effects seem to be obtained by dithiol-disulphide modification of proteins and their active sites, as part of adaptive responses in oxidative stress.