23 resultados para Human identification

em Indian Institute of Science - Bangalore - Índia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Addition of estradiol 17-beta to first trimester human placental minces resulted in an increased synthesis of a protein of apparent molecular weight 45 kDa. The specific involvement of estrogen in the stimulation of this protein was established by demonstrating a reduction in the level of this protein by the addition of CCS 16949 A, an inhibitor of aromatase, a key enzyme in the biosynthesis of estradiol 17-beta and ICI 182,780, an estrogen receptor antagonist. The protein was purified to homogeneity and N-terminal sequencing of two of the internal peptides obtained by enzymatic digestion of the protein, as well as the absence of a free N-terminal indicated that it could be actin. This was confirmed by Western blotting using commercially available actin antiserum. The role of estradiol 17-beta in the stimulation of actin synthesis in human placenta was also established by monitoring the quantitative inhibition of DNase I by actin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Identification of epitopes by modification studies has been reported by us recently. The method requires milligram quantities of antigen and since several proteins are not available in large quantities they are not amenable for such an investigation. One such protein is human follicle stimulating hormone (hFSH) whose mapping of epitopes is of importance in reproductive biology. Here we report a method that uses microgram quantities of hFSH to map a beta-specific epitope located at the receptor binding region. This identification has also been validated by the chemical modification method using heterologous antigen ovine follicle stimulating hormone (oFSH).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Identification of conformation-specific epitopes of hCG beta has been done using a simple batch method, Chemically or enzymatically-modified hCG beta has been prepared in a batch and the effect of modifications on the integrity of different epitope regions has been investigated in a quantitative manner using monoclonal antibodies (MAbs) immobilized on plastic tubes from culture supernatants. Based on the extent of damage done to different regions by different modifications, three conformation-specific epitopes of hCG beta have been identified. The method has been shown to have important advantages over the existing methods on many considerations, Using this approach, these epitopes have been shown to be at/near the receptor-binding region.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder with loci on chromosome 9q34.12 (TSC1) and chromosome 16p13.3 (TSC2). Genes for both loci have been isolated and characterized. The promoters of both genes have not been characterized so far and little is known about the regulation of these genes. This study reports the characterization of the human TSC1 promoter region for the first time. We have identified a novel alternative isoform in the 5' untranslated region (UTR) of the TSC1 gene transcript involving exon 1. Alternative isoforms in the 5' UTR of the mouse Tsc1 gene transcript involving exon I and exon 2 have also been identified. We have identified three upstream open reading frames (uORFs) in the 5' UTR of the TSC1/Tsc1 gene. A comparative study of the 5' UTR of TSC1/Tsc1 gene has revealed that there is a high degree of similarity not only in the sequence but also in the splicing pattern of both human and mouse TSC1 genes. We have used PCR methodology to isolate approximately 1.6 kb genomic DNA 5' to the TSC1 cDNA. This sequence has directed a high level of expression of luciferase activity in both HeLa and HepG2 cells. Successive 5' and 3' deletion analysis has suggested that a -587 bp region, from position +77 to -510 from the transcription start site (TSS), contains the promoter activity. Interestingly, this region contains no consensus TATA box or CAAT box. However, a 521-bp fragment surrounding the TSS exhibits the characteristics of a CpG island which overlaps with the promoter region. The identification of the TSC1 promoter region will help in designing a suitable strategy to identify mutations in this region in patients who do not show any mutations in the coding regions. It will also help to study the regulation of the TSC1 gene and its role in tumorigenesis. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The entire extracellular domain of the human heat-stable enterotoxin (ST) receptor as well as a truncated N-terminal domain were cloned as glutathione S-transferase fusion proteins and expressed in Escherichia coli. The recombinant fusion proteins were purified from both the cytosol and the inclusion body fractions by selective detergent extraction followed by glutathione-agarose affinity chromatography. The purified protein, corresponding to the entire extracellular domain, bound the stable toxin peptide with an affinity comparable to that of the native receptor characterized from the human colonic T84 cell line. No binding was observed with the N-terminal truncated fragment of the receptor under similar conditions, Polyclonal antibodies were raised to the entire extracellular domain fusion protein as well as the truncated extracellular domain fusion protein, and the antibodies were purified by affinity chromatography. Addition of the purified antibodies to T84 cells inhibited ST binding and abolished ST-mediated cGMP production, indicating that critical epitopes involved in ligand interaction are present in the N-terminal fragment of the receptor, Purified antibodies recognized a single protein of M(r) 160,000 Da on Western blotting with T84 membranes, corresponding to a size of the native glycosylated receptor in T84 cells. These studies are the first report of the expression, purification, and characterization of any member of the guanylyl cyclase family of receptors in E. coli and show that binding of the toxin to the extracellular domain of the receptor is possible in the absence of any posttranslational modifications such as glycosylation. The recombinant fusion proteins as well as the antibodies that we have generated could serve as useful tools in the identification of critical residues of the extracellular domain involved in ligand interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three overlapping assembled epitopes of beta hCG have been mapped using MAb probes and a single step solid phase radioimmunoassay. These epitopes have been shown to be at receptor binding region comprising of the loop region beta Cys93-Cys100. Importance of disulphide bonds in maintaining integrity of these epitopes is assessed. Two MAbs (INN 58 and INN 22) interact with the beta region as well as the alpha C-terminal peptide, while the other MAb INN 24 interacts with only the beta region. Cross-reactivity pattern with beta hCG and hLH as web as the reported crystal structure of hCG substantiates the epitope identification. The results demonstrate utility of MAbs as probes in investigations on three-dimensional structure of gonadatropins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malaria causes a worldwide annual mortality of about a million people.Rapidly evolving drug-resistant species of the parasite have created a pressing need for the identification of new drug targets and vaccine candidates. By developing fractionation protocols to enrich parasites from low-parasitemia patient samples, we have carried out the first ever proteomics analysis of clinical isolates of early stages of Plasmodium falciparum (Pf) and P. vivax. Patient-derived malarial parasites were directly processed and analyzed using shotgun proteomics approach using high-sensitivity MS for protein identification. Our study revealed about 100 parasite-coded gene products that included many known drug targets such as Pf hypoxanthine guanine phosphoribosyl transferase, Pf L-lactate dehydrogenase, and Plasmepsins. In addition,our study reports the expression of several parasite proteins in clinical ring stages that have never been reported in the ring stages of the laboratory-cultivated parasite strain. This proof-of-principle study represents a noteworthy step forward in our understanding of pathways elaborated by the parasite within the malaria patient and will pave the way towards identification of new drug and vaccine targets that can aid malaria therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deoxyhypusine synthase, an NAD(+)-dependent enzyme, catalyzes the first step in the post-translational synthesis of an unusual amino acid, hypusine (N-epsilon-(4-amino-2-hydroxybutyl)lysine), in the eukaryotic initiation factor 5A precursor protein. Two putative deoxyhypusine synthase (DHS) sequences have been identified in the Leishmania donovani genome, which are present on chromosomes 20: DHSL20 (DHS-like gene from chromosome 20) and DHS34 (DHS from chromosome 34). Although both sequences exhibit an overall conservation of key residues, DHSL20 protein lacks a critical lysine residue, and the recombinant protein showed no DHS activity in vitro. However, DHS34 contains the critical lysine residue, and the recombinant DHS34 effectively catalyzed deoxyhypusine synthesis. Furthermore, in vivo labeling confirmed that hypusination of eukaryotic initiation factor 5A occurs in intact Leishmania parasites. Interestingly, the DHS34 is much longer, with 601 amino acids, compared with the human DHS enzyme (369 amino acids) and contains several unique insertions. To study the physiological role of DHS34 in Leishmania, gene deletion mutations were attempted via targeted gene replacement. However, chromosomal null mutants of DHS34 could only be obtained in the presence of a DHS34-containing episome. The present data provide evidence that DHS34 is essential for L. donovani and that structural differences in the human and leishmanial DHS enzyme may be exploited for designing selective inhibitors against the parasite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The virus inducible non-coding RNA (VINC) was detected initially in the brain of mice infected with Japanese encephalitis virus (JEV) and rabies virus. VINC is also known as NEAT1 or Men epsilon RNA. It is localized in the nuclear paraspeckles of several murine as well as human cell lines and is essential for paraspeckle formation. We demonstrate that VINC interacts with the paraspeckle protein, P54nrb through three different protein interaction regions (PIRs) one of which (PIR-1) is localized near the 50 end while the other two (PIR-2, PIR-3) are localized near the 30 region of VINC. Our studies suggest that VINC may interact with P54nrb through a novel mechanism which is different from that reported for protein coding RNAs. (C) 2010 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emergence of strains of Plasmodium falciparum resistant to the commonly used antimalarials warrants the development of new antimalarial agents. The discovery of type II fatty acid synthase (FAS) in Plasmodium distinct from the FAS in its human host (type I FAS) opened up new avenues for the development of novel antimalarials. The process of fatty acid synthesis takes place by iterative elongation of butyryl-acyl carrier protein (butyryl-ACP) by two carbon units, with the successive action of four enzymes constituting the elongation module of FAS until the desired acyl length is obtained. The study of the fatty acid synthesis machinery of the parasite inside the red blood cell culture has always been a challenging task. Here, we report the in vitro reconstitution of the elongation module of the FAS of malaria parasite involving all four enzymes, FabB/F (β-ketoacyl-ACP synthase), FabG (β-ketoacyl-ACP reductase), FabZ (β-ketoacyl-ACP dehydratase), and FabI (enoyl-ACP reductase), and its analysis by matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS). That this in vitro systems approach completely mimics the in vivo machinery is confirmed by the distribution of acyl products. Using known inhibitors of the enzymes of the elongation module, cerulenin, triclosan, NAS-21/91, and (–)-catechin gallate, we demonstrate that accumulation of intermediates resulting from the inhibition of any of the enzymes can be unambiguously followed by MALDI-TOF MS. Thus, this work not only offers a powerful tool for easier and faster throughput screening of inhibitors but also allows for the study of the biochemical properties of the FAS pathway of the malaria parasite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emergence of strains of Plasmodium falciparum resistant to the commonly used antimalarials warrants the development of new antimalarial agents. The discovery of type II fatty acid synthase (FAS) in Plasmodium distinct from the FAS in its human host (type I FAS) opened up new avenues for the development of novel antimalarials. The process of fatty acid synthesis takes place by iterative elongation of butyryl-acyl carrier protein (butyryl-ACP) by two carbon units, with the successive action of four enzymes constituting the elongation module of FAS until the desired acyl length is obtained. The study of the fatty acid synthesis machinery of the parasite inside the red blood cell culture has always been a challenging task. Here, we report the in vitro reconstitution of the elongation module of the FAS of malaria parasite involving all four enzymes, FabB/F (β-ketoacyl-ACP synthase), FabG (β-ketoacyl-ACP reductase), FabZ (β-ketoacyl-ACP dehydratase), and FabI (enoyl-ACP reductase), and its analysis by matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS). That this in vitro systems approach completely mimics the in vivo machinery is confirmed by the distribution of acyl products. Using known inhibitors of the enzymes of the elongation module, cerulenin, triclosan, NAS-21/91, and (–)-catechin gallate, we demonstrate that accumulation of intermediates resulting from the inhibition of any of the enzymes can be unambiguously followed by MALDI-TOF MS. Thus, this work not only offers a powerful tool for easier and faster throughput screening of inhibitors but also allows for the study of the biochemical properties of the FAS pathway of the malaria parasite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benzothiazoles are multitarget agents with broad spectrum of biological activity. Among the antitumor agents discovered in recent years, the identification of various 2-(4-aminophenyl) benzothiazoles as potent and selective antitumor drugs against different cancer cell lines has stimulated remarkable interest. Some of the benzothiazoles are known to induce cell cycle arrest, activation of caspases and interaction with DNA molecule. Based on these interesting properties of benzothiazoles and to obtain new biologically active agents, a series of novel 4,5,6,7-tetrahydrobenzo[d]thiazole derivatives 5(a-i) were synthesized and evaluated for their efficacy as antileukemic agents in human leukemia cells (K562 and Reh). The chemical structures of the synthesized compounds were confirmed by H-1 NMR, LCMS and IR analysis. The cytotoxicity of these compounds were determined using trypan blue exclusion, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Results showed that, these compounds mediate a significant cytotoxic response to cancer cell lines tested. We found that the compounds having electron withdrawing groups at different positions of the phenyl ring of the thiourea moiety displayed significant cytotoxic effect with IC50 value less than 60 mu M. To rationalize the role of electron withdrawing group in the induction of cytotoxicity, we have chosen molecule 5g (IC50 similar to 15 mu M) which is having chloro substitution at ortho and para positions. Flow cytometric analysis of annexin V-FITC/ propidium iodide (PI) double staining and DNA fragmentation suggest that 5g can induce apoptosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human platelet-derived growth factor (PDGF) is composed of two polypeptide chains, PDGF-1 and PDGF-2,the human homolog of the v-sis oncogene. Deregulation of PDGF-2 expression can confer a growth advantage to cells possessing the cognate receptor and, thus, may contribute to the malignant phenotype. We investigated the regulation of PDGF-2 mRNA expression during megakaryocytic differentiation of K562 cells. Induction by 12-O-tetradecanoylphorbol-13-acetate (TPA) led to a greater than 200-fold increase in PDGF-2 transcript levels in these cells. Induction was dependent on protein synthesis and was not enhanced by cycloheximide exposure.In our initial investigation of the PDGF-2 promoter, a minimal promoter region, which included sequences extending only 42 base pairs upstream of the TATA signal, was found to be as efficient as 4 kilobase pairs upstream of the TATA signal in driving expression of a reporter gene in uninduced K562 cells. We also functionally identified different regulatory sequence elements of the PDGF-2 promoter in TPA-induced K562 cells. One region acted as a transcriptional silencer, while another region was necessary for maximal activity of the promoter in megakaryoblasts. This region was shown to bind nuclear factors and was the target for trans-activation in normal and tumor cells. In one tumor cell line, which expressed high PDGF-2 mRNA levels, the presence of the positive regulatory region resulted in a 30-fold increase in promoter activity. However, the ability of the minimal PDGF-2 promoter to drive reporter gene expression in uninduced K562 cells and normal fibroblasts, which contained no detectable PDGF-2 transcripts, implies the existence of other negative control mechanisms beyond the regulation of promoter activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glioblastoma (GBM; grade IV astrocytoma) is the most malignant and common primary brain tumor in adults. Using combination of 2-DE and MALDI-TOF MS, we analyzed 14 GBM and 6 normal control sera and identified haptoglobin alpha 2 chain as an up-regulated serum protein in GBM patients. GBM-specific up-regulation was confirmed by ELISA based quantitation of haptoglobin (Hp) in the serum of 99 GBM patients as against lower grades (49 grade III/AA; 26 grade II/DA) and 26 normal individuals (p = 0.0001). Further validation using RT-qPCR on an independent set (n = 78) of tumor and normal brain (n = 4) samples and immunohistochemcial staining on a subset (n = 42) of above samples showed increasing levels of transcript and protein with tumor grade and were highest in GBM (p = < 0.0001 and < 0.0001, respectively). Overexpression of Hp either by stable integration of Hp cDNA or exogenous addition of purified Hp to immortalized astrocytes resulted in increased cell migration. RNAi-mediated silencing of Hp in glioma cells decreased cell migration. Further, we demonstrate that both human glioma and mouse melanoma cells overexpressing Hp showed increased tumor growth. Thus, we have identified haptoglobin as a GBM-specific serum marker with a role on glioma tumor growth and migration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major heat-stable shrimp allergen (designated as Sa-II), capable of provoking IgE-mediated immediate type hypersensitivity reactions after the ingestion of cooked shrimp, has been shown to be a 34-kDa heat- stable protein containing 300 amino acid residues. Here, we report that a comparison of amino acid sequences of different peptides generated by proteolysis of Sa-II revealed an 86% homology with tropomyosin from Drosophila melanogaster, suggesting that Sa-II could be the shrimp muscle protein tropomyosin. To establish that Sa-II is indeed tropomyosin, the latter was isolated from uncooked shrimp (Penaeus indicus) and its physicochemical and immunochemical properties were compared with those of Sa-II. Both tropomyosin and Sa-II had the same molecular mass and focused in the isoelectric pH range of 4.8 to 5.4. In the presence of 6 M urea, the mobility of both Sa-II and shrimp tropomyosin shifted to give an apparent molecular mass of 50 kDa, which is a characteristic property of tropomyosins. Shrimp tropomyosin bound to specific IgE antibodies in the sera of shrimp-sensitive patients as assessed by competitive ELISA inhibition and Western blot analysis. Tryptic maps of both Sa-II and tropomyosin as obtained by reverse phase HPLC were superimposable. Dot-blot and competitive ELISA inhibition using sera of shrimp-sensitive patients revealed that antigenic as well as allergenic activities were associated with two peptide fractions. These IgE-binding tryptic peptides were purified and sequenced. Mouse anti-anti-idiotypic antibodies raised against Sa-II specific human idiotypic antibodies recognized not only tropomyosin but also the two allergenic peptides, thus suggesting that these peptides represent the major IgE binding epitopes of tropomyosin. A comparison of the amino acid sequence of shrimp tropomyosin in the region of IgE binding epitopes (residues 50-66 and 153-161) with the corresponding regions of tropomyosins from different vertebrates confirmed lack of allergenic cross-reactivity between tropomyosins from phylogenetically distinct species.