8 resultados para Hand Dermatoses

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conformational analysis of a pair of two-linked peptide units in the anti-parallel arrangement is reported here with a view to study the effect of association of one chain with the other. The pair of two-linked peptide units were fixed in space through the hydrogen bonds between them, in accordance with certain hydrogen bond criteria. Model building was undertaken to ascertain whether the proximity of the side-chains could be used to eliminate any one of the right-hand twisted, left-hand twisted or regular β-structures. Stereochemically, it was found possible with all of them. The preference for a right-hand twisted β-structure, however, was indicated by the classical energy calculations. The relevance of the results thus obtained is discussed in the context of the preferential right-hand twist of the β-pleated sheets present in globular proteins. The agreement between the minimum energy conformations obtained for the pair of two-linked peptide units and the globular protein data is also indicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kim SS, Sripati AP, Bensmaia SJ. Predicting the timing of spikes evoked by tactile stimulation of the hand. J Neurophysiol 104: 1484-1496, 2010. First published July 7, 2010; doi: 10.1152/jn.00187.2010. What does the hand tell the brain? Tactile stimulation of the hand evokes remarkably precise patterns of neural activity, suggesting that the timing of individual spikes may convey information. However, many aspects of the transformation of mechanical deformations of the skin into spike trains remain unknown. Here we describe an integrate-and-fire model that accurately predicts the timing of individual spikes evoked by arbitrary mechanical vibrations in three types of mechanoreceptive afferent fibers that innervate the hand. The model accounts for most known properties of the three fiber types, including rectification, frequency-sensitivity, and patterns of spike entrainment as a function of stimulus frequency. These results not only shed light on the mechanisms of mechanotransduction but can be used to provide realistic tactile feedback in upper-limb neuroprostheses.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work is to develop a systematic methodology for describing hand postures and grasps which is independent of the kinematics and geometry of the hand model which in turn can be used for developing a universal referencing scheme. It is therefore necessary that the scheme be general enough to describe the continuum of hand poses. Indian traditional classical dance form, “Bharathanatyam”, uses 28 single handed gestures, called “mudras”. A Mudra can be perceived as a hand posture with a specific pattern of finger configurations. Using modifiers, complex mudras could be constructed from relatively simple mudras. An adjacency matrix is constructed to describe the relationship among mudras. Various mudra transitions can be obtained from the graph associated with this matrix. Using this matrix, a hierarchy of the mudras is formed. A set of base mudras and modifiers are used for describing how one simple posture of hand can be transformed into another relatively complex one. A canonical set of predefined hand postures and modifiers can be used in digital human modeling to develop standard hand posture libraries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primates exhibit laterality in hand usage either in terms of (a) hand with which an individual solves a task or while solving a task that requires both hands, executes the most complex action, that is, hand preference, or (b) hand with which an individual executes actions most efficiently, that is, hand performance. Observations from previous studies indicate that laterality in hand usage might reflect specialization of the two hands for accomplishing tasks that require maneuvering dexterity or physical strength. However, no existing study has investigated handedness with regard to this possibility. In this study, we examined laterality in hand usage in urban free-ranging bonnet macaques, Macaca radiata with regard to the above possibility. While solving four distinct food extraction tasks which varied in the number of steps involved in the food extraction process and the dexterity required in executing the individual steps, the macaques consistently used one hand for extracting food (i.e., task requiring maneuvering dexterity)the maneuvering hand, and the other hand for supporting the body (i.e., task requiring physical strength)the supporting hand. Analogously, the macaques used the maneuvering hand for the spontaneous routine activities that involved maneuvering in three-dimensional space, such as grooming, and hitting an opponent during an agonistic interaction, and the supporting hand for those that required physical strength, such as pulling the body up while climbing. Moreover, while solving a task that ergonomically forced the usage of a particular hand, the macaques extracted food faster with the maneuvering hand as compared to the supporting hand, demonstrating the higher maneuvering dexterity of the maneuvering hand. As opposed to the conventional ideas of handedness in non-human primates, these observations demonstrate division of labor between the two hands marked by their consistent usage across spontaneous and experimental tasks requiring maneuvering in three-dimensional space or those requiring physical strength. Am. J. Primatol. 76:576-585, 2014. (c) 2013 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are two major theories that attempt to explain hand preference in non-human primates-the `task complexity' theory and the `postural origins' theory. In the present study, we proposed a third hypothesis to explain the evolutionary origin of hand preference in non-human primates, stating that it could have evolved owing to structural and functional adaptations to feeding, which we refer to as the `niche structure' hypothesis. We attempted to explore this hypothesis by comparing hand preference across species that differ in the feeding ecology and niche structure: red howler monkeys, Alouatta seniculus and yellow-breasted capuchin monkeys, Sapajus xanthosternos. The red howler monkeys used the mouth to obtain food more frequently than the yellow-breasted capuchin monkeys. The red howler monkeys almost never reached for food presented on the opposite side of a wire mesh or inside a portable container, whereas the yellow-breasted capuchin monkeys reached for food presented in all four spatial arrangements (scattered, on the opposite side of a wire mesh, inside a suspended container, and inside a portable container). In contrast to the red howler monkeys that almost never acquired bipedal and clinging posture, the yellow-breasted capuchin monkeys acquired all five body postures (sitting, bipedal, tripedal, clinging, and hanging). Although there was no difference between the proportion of the red howler monkeys and the yellow-breasted capuchin monkeys that preferentially used one hand, the yellow-breasted capuchin monkeys exhibited an overall weaker hand preference than the red howler monkeys. Differences in hand preference diminished with the increasing complexity of the reaching-for-food tasks, i.e., the relatively more complex tasks were perceived as equally complex by both the red howler monkeys and the yellow-breasted capuchin monkeys. These findings suggest that species-specific differences in feeding ecology and niche structure can influence the perception of the complexity of the task and, consequently, hand preference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The computational architecture that enables the flexible coupling between otherwise independent eye and hand effector systems is not understood. By using a drift diffusion framework, in which variability of the reaction time (RT) distribution scales with mean RT, we tested the ability of a common stochastic accumulator to explain eye-hand coordination. Using a combination of behavior, computational modeling and electromyography, we show how a single stochastic accumulator to threshold, followed by noisy effector-dependent delays, explains eye-hand RT distributions and their correlation, while an alternate independent, interactive eye and hand accumulator model does not. Interestingly, the common accumulator model did not explain the RT distributions of the same subjects when they made eye and hand movements in isolation. Taken together, these data suggest that a dedicated circuit underlies coordinated eye-hand planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many studies of reaching and pointing have shown significant spatial and temporal correlations between eye and hand movements. Nevertheless, it remains unclear whether these correlations are incidental, arising from common inputs (independent model); whether these correlations represent an interaction between otherwise independent eye and hand systems (interactive model); or whether these correlations arise from a single dedicated eye-hand system (common command model). Subjects were instructed to redirect gaze and pointing movements in a double-step task in an attempt to decouple eye-hand movements and causally distinguish between the three architectures. We used a drift-diffusion framework in the context of a race model, which has been previously used to explain redirect behavior for eye and hand movements separately, to predict the pattern of eye-hand decoupling. We found that the common command architecture could best explain the observed frequency of different eye and hand response patterns to the target step. A common stochastic accumulator for eye-hand coordination also predicts comparable variances, despite significant difference in the means of the eye and hand reaction time (RT) distributions, which we tested. Consistent with this prediction, we observed that the variances of the eye and hand RTs were similar, despite much larger hand RTs (similar to 90 ms). Moreover, changes in mean eye RTs, which also increased eye RT variance, produced a similar increase in mean and variance of the associated hand RT. Taken together, these data suggest that a dedicated circuit underlies coordinated eye-hand planning.