10 resultados para FOCAL CEREBRAL-ISCHEMIA
em Indian Institute of Science - Bangalore - Índia
Resumo:
Unilateral ischemia in the right cerebral hemisphere of the rat was induced by ligation of the right common carotid artery coupled with controlled hemorrhage to produce hypotension (25±8 mm/Hg). Where indicated after 30 min of ischemia, the withdrawn blood was reinfused to restore arterial pressure to normal. Mitochondria isolated from the ipsilateral hemisphere after 30 min of ischemia showed significantly lower respiratory rates than the organelles isolated from the contralateral side. Oxidation of NAD+-linked substrates was more sensitive to inhibition in ischemia (30%) than was of ferrocytochromec (12%), succinate oxidation being intermediate. The activities of membrane-bound dehydrogenases (both NADH and succinate-linked) were also significantly lowered. Ischemia did not affect the cytochrome content of mitochondria. Respiratory activity (NAD+-linked) of mitochondria isolated from the ipsilateral hemisphere was twice as sensitive to inhibition by fatty acid as was of preparations from the contralateral side. Mitochondria isolated from cerebral cortex after 90 min of post-ischemic reperfusion showed no significant improvement in the rate of substrate oxidation. Adenine nucleotide translocase activity and energy-dependent Ca2+ uptake, both of which decreased significantly in mitochondria isolated from the ischemic brain, showed little recovery, on reperfusion. These observations suggested the strong possibility that the deleterious effects of ischemia on mitochondrial respiratory function might be mediated by free fatty acids that are known to accumulate in large amounts in ischemic tissues. The pattern of inhibition of ATPase activity was consistent with this view.
Resumo:
Objective: This study was undertaken to evaluate the neuroprotective activity of Wedelia calendulacea against cerebral ischemia/reperfusion induced oxidative stress in the rats. Materials and Methods: The global cerebral ischemia was induced in male albino Wistar rats by occluding the bilateral carotid arteries for 30 min followed by 1 h and 4 h reperfusion. At various times of reperfusion, the histopathological changes and the levels of malondialdehyde (MDA), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-s-transferase (GST), and hydrogen peroxide (H(2)O(2)) activity and brain water content were measured. Results: The ischemic changes were preceded by increase in concentration of MDA, hydrogen peroxide and followed by decreased GPx, GR, and GST activity. Treatment with W. calendulacea significantly attenuated ischemia-induced oxidative stress. W. calendulacea administration markedly reversed and restored to near normal level in the groups pre-treated with methanolic extract (250 and 500 mg/kg, given orally in single and double dose/day for 10 days) in dose-dependent way. Similarly, W. calendulacea reversed the brain water content in the ischemia reperfusion animals. The neurodegenaration also conformed by the histopathological changes in the cerebral-ischemic animals. Conclusion: The findings from the present investigation reveal that W. calendulacea protects neurons from global cerebral-ischemic injury in rat by attenuating oxidative stress.
Resumo:
The present study was to investigate the effect of W. calendulacea on ischemia and reperfusion-induced cerebral injury. Cerebral ischemia was induced by occluding right and left common carotid arteries (global cerebral ischemia) for 30 min followed by reperfusion for 1 h and 4 h individually. Various biochemical alterations, produced subsequent to the application of bilateral carotid artery occlusion (BCAO) followed by reperfusion viz. increase in lipid peroxidation (LPO), hydrogen peroxide (H(2)O(2)), and decrease in reduced glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD), level in the brain tissue, Western blot analysis (Cu-Zn-SOD and CAT) and assessment of cerebral infarct size were measured. All those enzymes are markedly reversed and restored to near normal level in the groups pre-treated with W. calendulacea (250 and 500 mg/kg given orally in single and double dose/day for 10 days) in dose-dependent way. The effect of W. calendulacea had increased significantly the protein expression of copper/zinc superoxide dismutase (Cu-Zn-SOD) and CAT in cerebral ischemia. W. claendulacea was markedly decrease cerebral infarct damages but results are not statistically significant. It can be concluded that W. calendulacea possesses a neuroprotective activity against cerebral ischemia in rat.
Resumo:
The phenomenon of neurotransmitter-stimulated incorporation of32Pi into phosphatidic acid and inositol phosphatides (neurotransmitter effect) in developing brain was studied in vitro as a possible measure of synaptogenesis. While the neurotransmitter effect was not observed with brain homogenates, highly consistent and significant effects were noted with brain tissue suspensions obtained by passing the tissue through nylon bolting cloth. The magnitude of the effect decreased with the increase in mesh number. Maximum stimulations obtained with the 33 mesh adult brain cortex preparations (mean±S.E.M. of6experiments) were203 ± 8%, 316 ± 11 % and150 ± 8% with 10−3 M acetylcholine (ACh) + 10−3 M eserine; 10−2 M norepinephrine (NE) and 10−2 M serotonin (5-HT), respectively. Experiments with developing rat brain at 7, 14 and 21 days of age showed that the neurotransmitter effects due to ACh, NE and 5-HT increase progressively in different regions of the brain but that there are marked regional differences. It is suggested that the neurotransmitter effect is a valid biochemical correlate of synaptogenesis. In rats undernourished from birth t0 21 days of age, by increasing the litter size, the neurotransmitter effect with ACh, NE or 5-HT was not altered in the cortex but was significantly reduced in the brain stem. In cerebellum the effects due to ACh and NE were significantly altered, while that with 5-HT was unaffected. It is concluded that cholinergic, adrenergic and serotonergic synapses are relatively unaffected in the cortex but are significantly affected in the brain stem by undernutrition. In the cerebellum of undernourished rats the adrenergic and cholinergic, but not serotonergic systems, are altered.
Resumo:
For the specific case of binary stars, this paper presents signal-to-noise ratio (SNR) calculations for the detection of the parity (the side of the brighter component) of the binary using the double correlation method. This double correlation method is a focal plane version of the well-known Knox-Thompson method used in speckle interferometry. It is shown that SNR for parity detection using double correlation depends linearly on binary separation. This new result was entirely missed by previous analytical calculations dealing with a point source. It is concluded that, for magnitudes relevant to the present day speckle interferometry and for binary separations close to the diffraction limit, speckle masking has better SNR for parity detection.
Resumo:
The present study deals with the in vitro and in vivo effects of methyl isocyanate (MIC) on rat brain mitochondrial function. Addition of MIC to tightly coupled brain mitochondria in vitro resulted in a mild stimulation of state 4 respiration, abolition of respiratory control, decrease in ADP/0 ratio, and inhibition of state 3 oxidation. The oxidation of NAD+-linked substrates (glutamate + malate) was more sensitive (fourfold) to the inhibitory action of MIC than succinate while cytochrome oxidase was unaffected. Administration of MIC subcutaneously at a lethal dose affected respiration only with glutamate + malate as the substrate (site I) and caused a 20% decrease in state 3 oxidation leading to a significant decrease in respiratory control index while state 4 respiration and ADP/O ratio remained unaffected. As both the malondialdehyde and iron contents of brain mitochondria were not altered, it may be inferred that the observed in vivo inhibition of state 3 oxidation is induced by MIC through systemic stagnant hypoxia leading to ischemia of brain, which further contributes to the cerebral hypoxia.
Resumo:
We demonstrate diffusing-wave spectroscopy (DWS) in a localized region of a viscoelastically inhomogeneous object by measurement of the intensity autocorrelation g(2)(tau)] that captures only the decay introduced by the temperature-induced Brownian motion in the region. The region is roughly specified by the focal volume of an ultrasound transducer which introduces region specific mechanical vibration owing to insonification. Essential characteristics of the localized non-Markovian dynamics are contained in the decay of the modulation depth M(tau)], introduced by the ultrasound forcing in the focal volume selected, on g(2)(tau). The modulation depth M(tau(i)) at any delay time tau(i) can be measured by short-time Fourier transform of g(2)(tau) and measurement of the magnitude of the spectrum at the ultrasound drive frequency. By following the established theoretical framework of DWS, we are able to connect the decay in M(tau) to the mean-squared displacement (MSD) of scattering centers and the MSD to G*(omega), the complex viscoelastic spectrum. A two-region composite polyvinyl alcohol phantom with different viscoelastic properties is selected for demonstrating local DWS-based recovery of G*(omega) corresponding to these regions from the measured region specific M(tau(i))vs tau(i). The ultrasound-assisted measurement of MSD is verified by simulating, using a generalized Langevin equation (GLE), the dynamics of the particles in the region selected as well as by the usual DWS experiment without the ultrasound. It is shown that whereas the MSD obtained by solving the GLE without the ultrasound forcing agreed with its experimental counterpart covering small and large values of tau, the match was good only in the initial transients in regard to experimental measurements with ultrasound.
Resumo:
Gamma rhythm (which has a center frequency between 30 and 80 Hz) is modulated by cognitive mechanisms such as attention and memory, and has been hypothesized to play a role in mediating these processes by supporting communication channels between cortical areas or encoding information in its phase. We highlight several issues related to gamma rhythms, such as low and inconsistent power, its dependence on low-level stimulus features, problems due to conduction delays, and contamination due to spike-related activity that makes accurate estimation of gamma phase difficult. Gamma rhythm could be a potentially useful signature of excitation-inhibition interactions in the brain, but whether it also provides a mechanism for information processing or coding remains an open question.
Resumo:
Malaria afflicts around 200 million people annually, with a mortality number close to 600,000. The mortality rate in Human Cerebral Malaria (HCM) is unacceptably high (15-20%), despite the availability of artemisinin-based therapy. An effective adjunct therapy is urgently needed. Experimental Cerebral Malaria (ECM) in mice manifests many of the neurological features of HCM. Migration of T cells and parasite-infected RBCs (pRBCs) into the brain are both necessary to precipitate the disease. We have been able to simultaneously target both these parameters of ECM. Curcumin alone was able to reverse all the parameters investigated in this study that govern inflammatory responses, CD8(+) T cell and pRBC sequestration into the brain and blood brain barrier (BBB) breakdown. But the animals eventually died of anemia due to parasite build-up in blood. However, arteether-curcumin (AC) combination therapy even after the onset of symptoms provided complete cure. AC treatment is a promising therapeutic option for HCM.