4 resultados para CHEMOKINES

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Interferon gamma (IFN-gamma) increases the expression of multiple genes and responses; however, the mechanisms by which IFN-gamma downmodulates cellular responses is not well understood. In this study, the repression of CCL3 and CCL4 by IFN-gamma and nitric oxide synthase 2 (NOS2) in macrophages and upon Salmonella typhimurium infection of mice was investigated. Methods. Small molecule regulators and adherent peritoneal exudates cells (A-PECs) from Nos2(-/-)mice were used to identify the contribution of signaling molecules during IFN-gamma-mediated in vitro regulation of CCL3, CCL4, and CXCL10. In addition, infection of bone marrow-derived macrophages (BMDMs) and mice (C57BL/6, Ifn-gamma(-/), and Nos2(-/-)) with S. typhimurium were used to gain an understanding of the in vivo regulation of these chemokines. Results. IFN-gamma repressed CCL3 and CCL4 in a signal transducer and activator of transcription 1 (STAT1)-NOS2-p38 mitogen activated protein kinase (p38MAPK)-activating transcription factor 3 (ATF3) dependent pathway in A-PECs. Also, during intracellular replication of S. typhimurium in BMDMs, IFN-gamma and NOS2 repressed CCL3 and CCL4 production. The physiological roles of these observations were revealed during oral infection of mice with S. typhimurium, wherein endogenous IFN-gamma and NOS2 enhanced serum amounts of tumor necrosis factor alpha and CXCL10 but repressed CCL3 and CCL4. Conclusions. This study sheds novel mechanistic insight on the regulation of CCL3 and CCL4 in mouse macrophages and during S. typhimurium oral infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inflammatory processes are involved in the pathogenesis and/or progression of acute central nervous system (CNS) infection, traumatic brain injury and neurodegenerative disorders among others indicating the need for novel strategies to limit neuroinflammation. Eicosanoids including leukotrienes, particularly leukotriene B-4 (LTB4) are principle mediator(s) of inflammatory response, initiating and amplifying the generation of cytokines and chemokines. Cytochrome P450 (Cyp), a family of heme proteins mediate metabolism of xenobiotics and endogenous compounds, such as eicosanoids and leukotrienes. Cytochrome P4504F (Cyp4f) subfamily includes five functional enzymes in mouse. We cloned and expressed the mouse Cyp4f enzymes, assayed their relative expression in brain and examined their ability to hydroxylate the inflammatory cascade prompt LTB4 to its inactive 20-hydroxylated product. We then examined the role of Cyp4fs in regulating inflammatory response in vitro, in microglial cells and in vivo, in mouse brain using lipopolysacharide (LPS), as a model compound to generate inflammatory response. We demonstrate that mouse brain Cyp4fs are expressed ubiquitously in several cell types in the brain, including neurons and microglia, and modulate inflammatory response triggered by LPS, in vivo and in microglial cells, in vitro through metabolism of LTB4 to the inactive 20-hydroxy LTB4. Chemical inhibitor or shRNA to Cyp4fs enhance and inducer of Cyp4fs attenuates inflammatory response. Further, induction of Cyp4f expression lowers LTB4 levels and affords neuroprotection in microglial cells or mice exposed to LPS. Thus, catalytic activity of Cyp4fs is a novel target for modulating neuroinflammation through hydroxylation of LTB4. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonsteroid anti-inflammatory drugs (NSAIDs) represent standard therapy for the alleviation of pain and inflammation. At present various classes of compounds have been reported as selective inhibitors of cyclooxygenase-2 (COX-2). However, they are associated with adverse side effects. To address these issues, we report here a new class of compounds that exhibit potent analgesic and anti-inflammatory response. Substituted bromo-benzothiophene carboxamides (4-11) were examined for their analgesic and anti-inflammatory properties. Our findings demonstrate that newly synthesized bromo-benzothiophene carboxamide derivatives 4, 6, and 8 attenuate nociception and inflammation at lower concentration than classical NSAIDs, such as ibuprofen. These compounds act by selectively inhibiting COX-2 and by disrupting the prostaglandin-E2-dependent positive feedback of COX-2 regulation, which was further substantiated by reduction in the levels of cytokines, chemokines, neutrophil accumulation, synthesis of prostaglandin-E2, expression of COX-2, and neutrophil activation at lower concentration than the classic NSAID ibuprofen. Toxicological study reveals that these compounds are well tolerated and metabolized to avoid any toxicity. Thus, these molecules represent a new class of analgesic and anti-inflammatory agents. (c) 2014 IUBMB Life, 66(3):201-211, 2014