13 resultados para Auxin

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The auxin-induced formation of roots in the hypocotyls of Phaseolus vulgaris can be prevented by treatment with actinomycin D, colchicine or cytochalasin B if applied within 40 hr of initiation. Shortly after auxin pretreatment, there is an increase in translatable messenger RNA activity. Analysis of the labelled cell-free products indicate, among other changes, a striking increase in a protein co-migrating with tubulin, in the case of RNA isolated from indolebutyric acid (IBA) pretreated hypocotyls. An increase in tubulin content in vivo can also be demonstrated on the basis of SDS-polyacrylamide gel analysis of membrane proteins and functional assays for tubulin polymerization. An increase in the synthesis of tubulin in vivo can also be demonstrated after IBA pretreatment. In addition, the auxin is also able to promote tubulin polymerization when added in vitro. It is suggested that tubulin synthesis and microtubule assembly are early events in auxin-mediated root differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GH3 proteins control auxin homeostasis by inactivating excess auxin as conjugates of amino acids and sugars and thereby controlling cellular bioactive auxin. Since auxin regulates many aspects of plant growth and development, regulated expression of these genes offers a mechanism to control various developmental processes. OsMGH3/OsGH3-8 is expressed abundantly in rice florets and is regulated by two related and redundant transcription factors, OsMADS1 and OsMADS6, but its contribution to flower development is not known. We functionally characterize OsMGH3 by overexpression and knock-down analysis and show a partial overlap in these phenotypes with that of mutants in OsMADS1 and OsMADS6. The overexpression of OsMGH3 during the vegetative phase affects the overall plant architecture, whereas its inflorescence-specific overexpression creates short panicles with reduced branching, resembling in part the effects of OsMADS1 overexpression. In contrast, the down-regulation of endogenous OsMGH3 caused phenotypes consistent with auxin overproduction or activated signaling, such as ectopic rooting from aerial nodes. Florets in OsMGH3 knock-down plants were affected in carpel development and pollen viability, both of which reduced fertility. Some of these floret phenotypes are similar to osmads6 mutants. Taken together, we provide evidence for the functional significance of auxin homeostasis and its transcriptional regulation during rice panicle branching and floret organ development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the CINCINNATA (CIN) gene in Antirrhinum majus and its orthologs in Arabidopsis result in crinkly leaves as a result of excess growth towards the leaf margin. CIN homologs code for TCP (TEOSINTE-BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTOR 1 AND 2) transcription factors and are expressed in a broad zone in a growing leaf distal to the proliferation zone where they accelerate cell maturation. Although a few TCP targets are known, the functional basis of CIN-mediated leaf morphogenesis remains unclear. We compared the global transcription profiles of wild-type and the cin mutant of A. majus to identify the targets of CIN. We cloned and studied the direct targets using RNA in situ hybridization, DNA-protein interaction, chromatin immunoprecipitation and reporter gene analysis. Many of the genes involved in the auxin and cytokinin signaling pathways showed altered expression in the cin mutant. Further, we showed that CIN binds to genomic regions and directly promotes the transcription of a cytokinin receptor homolog HISTIDINE KINASE 4 (AmHK4) and an IAA3/SHY2 (INDOLE-3-ACETIC ACID INDUCIBLE 3/SHORT HYPOCOTYL 2) homolog in A. majus. Our results suggest that CIN limits excess cell proliferation and maintains the flatness of the leaf surface by directly modulating the hormone pathways involved in patterning cell proliferation and differentiation during leaf growth. 10.1111/(ISSN)1469-8137

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Excised shoot tips of Cuscuta reflexa Roxb. (dodder), a rootless and leafless angiospermic plant parasite, were cultured in vitro for the study of the control of lateral bud development by the apex. In a chemically defined medium lacking hormones, the basal bud alone developed into a shoot. The addition of coconut milk to the growth medium induced the activation of multiple lateral buds, but only a single bud developed further into a shoot. The decapitation of this shoot induced the development of another shoot and the process could be repeated. This showed the controlling effect of the apex in correlative control of bud development. Application of indole-3-acetic acid to the shoot tip explant delayed the development of the lateral bud. Gibberellic acid A3 induced a marked elongation growth of the explant and reinforced apical dominance. The direct application of cytokinin to an inhibited bud relieved it from apical dominance. A basipetally decreasing concentration gradient of auxin may prevail at the nodes. Bud outgrowth is probably stimulated by cytokinin produced locally in the bud.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gibberellic acid (GA3) induced a marked elongation of 2.5-centimeter shoot tips of Cuscuta chinensis Lamk. cultured in vitro. In terms of the absolute amount of elongation, this growth may be the largest reported for an isolated plant system. The response to hormone was dependent on an exogenous carbohydrate supply. The hormone-stimulated growth was due to both cell division and cell elongation. The growth response progressively decreased if GA3 was given at increasingly later times after culturing, but the decreased growth response could be restored by the application of indole-3-acetic acid (IAA) to the apex. Explants deprived of GA3 gradually lost their ability to transport IAA basipetally, but this ability was also restored by auxin application. The observations are explained on the basis that: (a) the growth of Cuscuta shoot tip in vitro requires, at least, both an auxin and a gibberellin; and (b) in the absence of gibberellin the cultured shoot tip explants lose the ability to produce and/or transport auxin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cuscuta stem (vines) exhibits two modes of growth—longitudinal elongation forming free-hanging vines, or coiling growth to twine around the host. The elongation zone of free-hanging vine extended up to 160 mm from the stem apex and in vivo growth rate (during 8 h of growth) was maximal in the 20-to-40-mm region. While gibberellic acid (GA3) or fusicoccin (FC) could maintain (GA3) or enhance (FC) the growth rate of apical (10 or 25 mm) segments, indole-3-acetic acid (IAA) (10 mgrM) induced growth only in subapical (5–160 mm) segments. In vitro growth rate induced by IAA (10 mgrM) was similar to the in vivo growth rate up to 40 mm. Thereafter, up to 100 mm, IAA induced growth rate exceeded in vivo growth. p ]Subapical segments (sim13 mm) from 5- to 40-mm regions responded to a cytokinin (BA, Z, or iP) or to low IAA (0.1 mgrM) with curved growth, whereas the segments grew straight in the presence of high IAA (10 mgrM). Curvature (measured as the angle subtended at the center of the circle of which the segment formed an arc) induced by BA and low (0.1 mgrM) IAA was greater than either added separately. Besides, segments induced to curve in BA + low-IAA solution could be made to straighten out by transferring to a solution containing high IAA (10 mgrM) with or without BA. Thus in vivo patterns of straight and coiling growth could be mimicked reversibly in vitro by adjusting the relative concentrations of cytokinin and auxin; low auxin and cytokinin induced coiling growth, whereas high auxin and cytokinin induced straight growth. p ]Beyond 40 mm, BA had no growth-promoting or curvative-inducing effect.Cuscuta vine segments thus showed sequential sensitivity to applied hormones, the apical region (0–25 mm) to GA3, the subapical (5–40 mm) region to BA and IAA and the region beyond (40–160 mm) to IAA alone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytokinins induced haustoria formation in excised 10-mm segments ofCuscuta vine, the subapical 25-to-50-mm region being most responsive, producing a mean of 4–6 haustoria per segment. The order of effectiveness of cytokinins continuously applied (72 h) was 6-benzylaminopurine (BA) ges isopentenyladenine (iP) Gt zeatin (Z). Ribosides of BA and Z were as effective as the bases, whereas riboside of iP ([9R]iP) was half as effective as iP. Haustoria induction was influenced by weather and seasonal conditions at the time of vine collection; materials obtained on warm, sunny days responded better than those obtained on rainy, cloudy, or cool days. Haustoria were induced equally well all around the segment, and no thigmostimulus was needed for induction. p ]A 10-min pulse of 100 mgrM BA induced half as many haustoria as a 60-min pulse or continuous application of BA. White light inhibited haustoria induction elicited by a short (30-min) pulse of BA, whereas a longer (120-min) BA application overcame this light inhibition. Auxins (IAA or NAA, 1–10 mgrM), gibberellin (GA3, 1–10 mgrM), ethylene (as ethrel, 10–100 mgrM), and abscisic acid (ABA, 100 mgrM) were individually inhibitory (60–80%) with respect to haustoria induction when given continuously with 50 mgrM BA. A 60-min pulse of auxins (10 mgrM), GA3 (100 mgrM), or ethrel (10 mgrM), given at various time intervals during or after a 60-min pulse of 100 mgrM BA, showed that inhibition was maximal (70–95%) between 4 and 16 h of BA application and negligible (GA3) or much reduced (auxin, ethrel) at 20 h, indicating a ldquocommitmentrdquo to haustoria formation by this time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid multiplication of axillary meristems and direct shoot development occurred from nodal explants of mature Eucalyptus tereticornis Sm. with 5.3 mgrM NAA, 1.1 mgrM IAA and 4.4 mgrM BA in Murashige-Skoog medium. Repeated subcultures of the second generation shoot cultures into low cytokinin-auxin containing media (0.44�0.88 mgrM BA+0.1 mgrM NAA) yielded axillary microshoots in large numbers. Half-strength MS liquid medium with 4.9 mgrM IBA, 5.5 mgrM IAA and 5.3 mgrM NAA for four days, half-strength semi-solid hormonefree MS medium with charcoal, and MS liquid medium without charcoal and hormones, in sequence, induced rooting of shoots in the dark. This system is suitable for the mass propagation of this difficult-to-root eucalypt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Callus cultures of sandalwood (Santalum album L.) were established from shoot segments and shoot tips of trees over 20 years old. Shoots were induced directly from shoot tip callus, while in shoot segments embryoids developed from the callus within 4 weeks after subculturing on to a medium supplemented with gibberellic acid (GA). Embryoids of 4–5 mm were transferred to basal medium or basal medium supplemented with low concentrations of auxin showed plantlet development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The identification of small molecules that affect T cell activation is an important area of research. Three molecules that regulate plant growth and differentiation, but not their structurally similar analogs, were identified to enhance primary mouse CD4(+) T cell activation in conjunction with soluble anti-CD3 stimulation: Indoleacetic acid (natural plant auxin), 1-Napthaleneacetic acid (synthetic plant auxin) and 2,4-Dichlorophenoxyacetic acid (synthetic plant auxin and herbicide). These effects are distinct in comparison to Curcumin, the well known phenolic immunomodulator, which lowers T cell activation. An investigation into the mechanisms of action of the three plant growth regulators revealed a rapid induction of reactive oxygen species (ROS), mainly comprising H2O2 . In addition, these three molecules synergize with soluble anti-CD3 signaling to enhance intracellular Ca2+ concentrations Ca2+](i), leading to greater T cell activation, e.g. induction of CD25 and IL-2. Enhanced production of TNF alpha and IFN gamma by CD4+ T cells is also observed upon plant growth regulator treatment with soluble anti-CD3. Interestingly, maximal IL-2 production and CD4(+) T cell cycle progression are observed upon activation with soluble anti-CD3 and phorbol 12-myristate 13-acetate (PMA), a phorbol ester. Additionally, stimulation with PMA and Ionomcyin (a Ca2+ ionophore), which activates T cells by circumventing the TCR, and plant growth regulators also demonstrated the role of the strength of signal (SOS): T cell cycle progression is enhanced with gentle activation conditions but decreased with strong activation conditions. This study demonstrates the direct effects of three plant growth regulators on CD4(+) T cell activation and cycling. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SEPALLATA (SEP) MADS box transcription factors mediate floral development in association with other regulators. Mutants in five rice (Oryza sativa) SEP genes suggest both redundant and unique functions in panicle branching and floret development. LEAFY HULL STERILE1/OsMADS1, from a grass-specific subgroup of LOFSEP genes, is required for specifying a single floret on the spikelet meristem and for floret organ development, but its downstream mechanisms are unknown. Here, key pathways and directly modulated targets of OsMADS1 were deduced from expression analysis after its knockdown and induction in developing florets and by studying its chromatin occupancy at downstream genes. The negative regulation of OsMADS34, another LOFSEP gene, and activation of OsMADS55, a SHORT VEGETATIVE PHASE-like floret meristem identity gene, show its role in facilitating the spikelet-to-floret meristem transition. Direct regulation of other transcription factor genes like OsHB4 (a class III homeodomain Leu zipper member), OsBLH1 (a BEL1-like homeodomain member), OsKANADI2, OsKANADI4, and OsETTIN2 show its role in meristem maintenance, determinacy, and lateral organ development. We found that the OsMADS1 targets OsETTIN1 and OsETTIN2 redundantly ensure carpel differentiation. The multiple effects of OsMADS1 in promoting auxin transport, signaling, and auxin-dependent expression and its direct repression of three cytokinin A-type response regulators show its role in balancing meristem growth, lateral organ differentiation, and determinacy. Overall, we show that OsMADS1 integrates transcriptional and signaling pathways to promote rice floret specification and development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Roles for the transcription factor RFL in rice axillary meristem development were studied. Its regulatory effects on LAX1, CUC1, and OsPIN3 reveal its functions in axillary meristem specification and outgrowth.Axillary meristems (AMs) are secondary shoot meristems whose outgrowth determines plant architecture. In rice, AMs form tillers, and tillering mutants reveal an interplay between transcription factors and the phytohormones auxin and strigolactone as some factors that underpin this developmental process. Previous studies showed that knockdown of the transcription factor gene RFL reduced tillering and caused a very large decrease in panicle branching. Here, the relationship between RFL, AM initiation, and outgrowth was examined. We show that RFL promotes AM specification through its effects on LAX1 and CUC genes, as their expression was modulated on RFL knockdown, on induction of RFL:GR fusion protein, and by a repressive RFL-EAR fusion protein. Further, we report reduced expression of auxin transporter genes OsPIN1 and OsPIN3 in the culm of RFL knockdown transgenic plants. Additionally, subtle change in the spatial pattern of IR4 DR5:GFP auxin reporter was observed, which hints at compromised auxin transport on RFL knockdown. The relationship between RFL, strigolactone signalling, and bud outgrowth was studied by transcript analyses and by the tillering phenotype of transgenic plants knocked down for both RFL and D3. These data suggest indirect RFL-strigolactone links that may affect tillering. Further, we show expression modulation of the auxin transporter gene OsPIN3 upon RFL:GR protein induction and by the repressive RFL-EAR protein. These modified forms of RFL had only indirect effects on OsPIN1. Together, we have found that RFL regulates the LAX1 and CUC genes during AM specification, and positively influences the outgrowth of AMs though its effects on auxin transport.