1 resultado para 060199 Biochemistry and Cell Biology not elsewhere classified

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of thiocarbamates (S-ethyldipropylthiocarbamate and diallate), substituted ureas (monuron and diuron), and uracils (bromacil and terbacil) on lipid metabolism in groundnut (Arachis hypogaea) leaves was investigated under nonphotosynthetic conditions. The uptake of [1-14C]acetate by leaf disks was inhibited by the thiocarbamates and marginally by the substituted ureas, but not by the uracil herbicides. The uptake of [methyl-14C]choline was inhibited to a lesser extent by thiocarbamates, while the other herbicides showed a slight stimulation. The thiocarbamates almost completely inhibited uptake of [32P]orthophosphate at 1.0 mM concentration, while diuron and terbacil showed significant inhibition. [1-14C]Acetate incorporation into lipids was inhibited only by diallate. [methyl-14C]Choline incorporation into the choline phosphoglycerides was inhibited by diallate, diuron, and bromacil. The incorporation of [32P]orthophosphate into phospholipids was substantially inhibited (over 90% at 1.0 mM) by the thiocarbamates, but not by the other herbicides. [35S]Sulfate incorporation into sulfoquinovosyl diglycerides was markedly inhibited only by the thiocarbamates. Fatty acid synthesis by isolated chloroplasts was inhibited 40–85% by thiocarbamates, substituted ureas, and bromacil, but not by terbacil. The inhibitory effect of the urea derivatives was reversible, but that of thiocarbamates was irreversible. sn-Glycerol-3-phosphate acyltransferase(s) of the chloroplast and microsomal fractions were profoundly inhibited by thiocarbamates, but not by the other two groups of herbicides. Phosphatidic acid phosphatase was insensitive to all the herbicides tested.