226 resultados para crystallization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gd2O3:Eu3+ (0.5-8.0 mol%) nanophosphors have been prepared by low temperature solution combustion method using metal nitrates as oxidizers and oxalyl dihydrazide (ODH) as a fuel. The phosphors are well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and photoluminescence (PL) techniques. PXRD patterns of as-formed and calcined (800 degrees C, 3 h) Gd2O3 powders exhibit monoclinic phase with mean crystallite sizes ranging from 20 to 50 nm. Eu3+ doping changes the structure from monoclinic to mixed phase of monoclinic and cubic. SEM micrographs shows the products are foamy, agglomerated and fluffy in nature due to the large amount of gases liberated during combustion reaction. Upon 254 nm excitation the photoluminescence of the Gd2O3:Eu3+ particles show red emission at 611 nm corresponding to D-5(0)-> F-7(2) transition. It is observed that PL intensity increases with calcination temperature. This might be attributed to better crystallization and eliminates the defects, which serve as centers of non-radiative relaxation for nanomaterials. It is observed that the optical energy gap (E-g) is widened with increase Eu3+ content. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The in situ cryo-crystallization study of benzyl derivatives reveals that the molecular packing in these compounds is either through methylene (sp(3)) C-H center dot center dot center dot pi or aromatic (sp(2)) C-H center dot center dot center dot pi interactions depending on the level of acidity of the benzyl proton. These studies of low melting compounds bring out the subtle features of such weak interactions and point to the directional preferences depending on the nature (electron withdrawing, polarizability) of the neighbouring functional group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alternating Differential Scanning Calorimetric (ADSC) and electrical switching studies have been undertaken on Ge20Se80-xBix glasses (1 <= x <= 13), to understand the effect of topological thresholds on thermal properties and electrical switching behavior. It is found that the compositional dependence of glass transition temperature (Tg), crystallization temperature (T-c1) and thermal stability (AT) of Ge20Se80-xBix glasses show anomalies at a composition x= 5, the rigidity percolation/stiffness threshold of the system. Further, unusual variations are also observed in different thermal properties, such as T-g, T-c1, Delta T, Delta C-p and Delta H-NR, at the composition x= 10, which indicates the occurrence of chemical threshold in these glasses at this composition. Electrical switching studies indicate that Ge20Se8o_RBig glasses with 5 11 exhibit threshold switching behavior and those with x = 12 and 13 show memory switching. A sharp decrease has been noticed in the switching voltages with bismuth concentration, which is due to the more metallic nature of bismuth and the presence of Bi+ ions. Further, a saturation is seen in the decrease in V-T around x = 6, which is related to bismuth phase percolation at higher concentrations of Bi. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gels of various composition containing SiO2, Al2O3, and P2O5 have been investigated by employing high resolution magic-angle-spinning (MAS) 27Al, 29Si, and 31P NMR spectroscopy. Changes occurring in the NMR spectra as the gels are progressively heated have been examined to understand the nature of structural changes occurring during the crystallization of the gels. 27Al resonance is sensitive to changes in the coordination number even when the Al concentration is as low as 1 mol%. As the percentage of Al increases, the hydroxyl groups tend to be located on the Al sites while Si remains as SiO4/2 (Q4). Mullite is the major phase formed at higher temperature in the aluminosilicate gels. In the case of the silicophosphate gels, Si is present in the form of Q4 and Q3 species. There is a change in the coordination of Si from four to six as the gel is heated. The formation of six-coordinated Si is facilitated even at lower temperatures (~673 K) when the P2O5 content is high. The phosphorus atoms present as orthophosphoric acid units in the xerogels change over to metaphosphate-like units as the gel is heated to higher temperatures. In aluminosilicophosphates, Si is present as Q4 and Q3 species while P is present as metaphosphate units; Al in these gels seems to be inducted into the tetrahedral network positions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crystallization of a TADDOL analogue results in an orthorhombic P2(1)2(1)2(1) form while the presence of a minute amount of a chiral impurity in the crystallization is found to be responsible for crystallization in a monoclinic P2(1) form.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-temperature internal-friction measurements have been used to study the universal low-energy excitations in glasses before and after crystallization in two glass ceramics, one based on MgO-Al2O3-SiO2 (Corning Code 9606) and one based on Li2O-Al2O3-SiO2 (Corning Code 9623). In the Code 9606 sample, the number density of excitations is greatly reduced, while in the Code 9623 sample, their number density remains practically unaltered in the crystallized state. These measurements confirm the conclusions reached by Cahill et al. (preceding paper), which were based on thermal measurements up to room temperature. These measurements also demonstrate the usefulness of internal friction as a tool for the study of these low-energy excitations, since internal friction is less sensitive to defects common to glass ceramics, like magnetic impurities and grain boundaries, which tend to dominate low-temperature specific heat and thermal conductivity, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we examine the unusual plastic deformation under uniaxial compression of an Al2O3-15 mol % Y2O3 (A15Y) glass synthesized by a wet chemical route At a low temperature of 650-725 degrees C, plastic deformation of this glass is largely non-viscous through shear instabilities In contrast deformation near the crystallization temperature (850 degrees C) occurs homogeneously with work hardening and with a monotonic increase in the true density of the glass by 10-12% accompanied by an increase in hardness (H) and elastic modulus (E) of up to 100% We hypothesize a phenomenon of molecular densification of the amorphous structure through a hierarchy of multiple phases, analogous to density- or entropy-driven amorphous to-amorphous phase transitions (polyamorphism) These results suggest that the present method of preparation and the unusual behavior can trigger a search for many more systems that display such behavior (C) 2010 Acta Materialia Inc Published by Elsevier Ltd All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NiTi thin films deposited by DC magnetron sputtering of an alloy (Ni/Ti:45/55) target at different deposition rates and substrate temperatures were analyzed for their structure and mechanical properties. The crystalline structure, phase-transformation and mechanical response were characterized by X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Nano-indentation techniques, respectively. The films were deposited on silicon substrates maintained at temperatures in the range 300 to 500 degrees C and post-annealed at 600 degrees C for four hours to ensure film crystallinity. Films deposited at 300 degrees C and annealed for 600 degrees C have exhibited crystalline behavior with Austenite phase as the prominent phase. Deposition onto substrates held at higher deposition temperatures (400 and 500 degrees C) resulted in the co-existence of Austenite phase along with Martensite phase. The increase in deposition rates corresponding to increase in cathode current from 250 to 350 mA has also resulted in the appearance of Martensite phase as well as improvement in crystallinity. XRD analysis revealed that the crystalline film structure is strongly influenced by process parameters such as substrate temperature and deposition rate. DSC results indicate that the film deposited at 300 degrees C had its crystallization temperature at 445 degrees C in the first thermal cycle, which is further confirmed by stress temperature response. In the second thermal cycle the Austenite and Martensite transitions were observed at 75 and 60 degrees C respectively. However, the films deposited at 500 degrees C had the Austenite and Martensite transitions at 73 and 58 degrees C, respectively. Elastic modulus and hardness values increased from 93 to 145 GPa and 7.2 to 12.6 GPa, respectively, with increase in deposition rates. These results are explained on the basis of change in film composition and crystallization. (C) 2010 Published by Elsevier Ltd

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bulk, melt quenched Ge18Te82-xBix glasses (1 <= x <= 4) have been found to exhibit memory type electrical switching behavior, which is in agreement with the lower thermal diffusivity values of Ge-Te-Bi samples. A linear variation in switching voltages (V-th) has been found in these samples with increase in thickness which is consistent with the memory type electrical switching. Also, the switching voltages have been found to decrease with an increase in temperature which happens due to the decrease in the activation energy for crystallization at higher temperatures. Further. V-th of Ge18Te82-xBix glasses have been found to decrease with the increase in Bi content, indicating that in the Ge-Te-Bi system, the resistivity of the additive has a stronger role to play in the composition dependence of V-th, in comparison with the network connectivity and rigidity factors. In addition, the composition dependence of crystallization activation energy has been found to show a decrease with an increase in Bi content, which is consistent with the observed decrease in the switching voltages. X-ray diffraction studies on thermally crystallized samples reveal the presence of hexagonal Te, GeTe, Bi2Te3 phases, suggesting that bismuth is not taking part in network formation to a greater extent, as reflected in the variation of switching voltages with the addition of Bi. SEM studies on switched and un-switched regions of Ge-Te-Bi samples indicate that there are morphological changes in the switched region, which can be attributed to the formation of the crystalline channel between two electrodes during switching. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mean-field description of the glass transition in the hard-sphere system is obtained by numerically locating "glassy" minima of a model free-energy functional. These minima, characterized by inhomogeneous but aperiodic density distributions, appear as the average density is increased above the value at which equilibrium crystallization takes place. Investigations of the density distribution and local bond-orientational order at these minima yield results similar to those obtained from simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The frequency and temperature dependence of the dielectric constant and the electrical conductivity of the transparent glasses in the composition 0.5Cs(2)O-0.5Li(2)O-3B(2)O(3) (CLBO) were investigated in the 100 Hz - 10 MHz frequency range. The dielectric constant for the as-quenched glass increased with increasing temperature, exhibiting anomalies in the vicinity of the glass transition and crystallization temperatures. The temperature coefficient of dielectric constant was estimated (35 +/- 2 ppm. K-1) using Havinga's formula. The dielectric loss at 313 K is 0.005 +/- 0.0005 at all the frequencies understudy. The activation energy associated with the electrical relaxation determined from the electric modulus spectra was found to be 1.73 +/- 0.05 eV, close to that of the activation energy obtained for DC conductivity (1.6 +/- 0.06 eV). The frequency dependent electrical conductivity was analyzed using Jonscher's power law. The combination of these dielectric characteristics suggests that these are good candidates for electrical energy storage device applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Precipitation in small droplets involving emulsions, microemulsions or vesicles is important for Producing multicomponent ceramics and nanoparticles. Because of the random nature of nucleation and the small number of particles in a droplet, the use of a deterministic population balance equation for predicting the number density of particles may lead to erroneous results even for evaluating the mean behavior of such systems. A comparison between the predictions made through stochastic simulation and deterministic population balance involving small droplets has been made for two simple systems, one involving crystallization and the other a single-component precipitation. The two approaches have been found to yield quite different results under a variety of conditions. Contrary to expectation, the smallness of the population alone does not cause these deviations. Thus, if fluctuation in supersaturation is negligible, the population balance and simulation predictions concur. However, for large fluctuations in supersaturation, the predictions differ significantly, indicating the need to take the stochastic nature of the phenomenon into account. This paper describes the stochastic treatment of populations, which involves a sequence of so-called product density equations and forms an appropriate framework for handling small systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sparingly soluble neodymium copper oxalate (NCO) single crystals were grown by gel method, by the diffusion of a mixture of neodymium nitrate and cupric nitrate into the set gel containing oxalic acid. Tabular crystal, revealing well-defined dissolution figures has been recorded. X-ray diffraction studies of the powdered sample reveal that NCO is crystalline. Infrared absorption spectrum confirmed the formation of oxalato complex with water of crystallization, while energy dispersive X-ray analysis established the presence of neodymium dominant over copper in the sample. X-ray photoelectron spectroscopic studies established the presence of Nd and Cu in oxide states besides (C2O4)(2-) oxalate group. The intensities of Nd (3d(5/2)) and Cu (2p(3/2)) peaks measured in terms of maximum photoelectron count rates also revealed the presence of Nd in predominance. The inductively coupled plasma analysis supports the EDAX and XPS data by the estimation of neodymium percentage by weight to that of copper present in the NCO sample. On the basis of these findings, an empirical structure for NCO has been proposed. The implications are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An energy landscape view of phase separation and nonideality in binary mixtures is developed by exploring their potential energy landscape (PEL) as functions of temperature and composition. We employ molecular dynamics simulations to study a model that promotes structure breaking in the solute-solvent parent binary liquid, at low temperatures. The PEL of the system captures the potential energy distribution of the inherent structures (IS) of the system and is obtained by removing the kinetic energy (including that of intermolecular vibrations). The broader distribution of the inherent structure energy for structure breaking liquid than that of the structure making liquid demonstrates the larger role of entropy in stabilizing the parent liquid of the structure breaking type of binary mixtures. At high temperature, although the parent structure of the structure breaking binary mixture is homogenous, the corresponding inherent structure is found to be always phase separated, with a density pattern that exhibits marked correlation with the energy of its inherent structure. Over a broad range of intermediate inherent structure energy, bicontinuous phase separation prevails with interpenetrating stripes as signatures of spinodal decomposition. At low inherent structure energy, the structure is largely phase separated with one interface where as at high inherent structure energy we find nucleation type growth. Interestingly, at low temperature, the average inherent structure energy (< EIS >) exhibits a drop with temperature which signals the onset of crystallization in one of the phases while the other remains in the liquid state. The nonideal composition dependence of viscosity is anticorrelated with average inherent structure energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fe/AlOOH gels calcined and reduced at different temperatures have been investigated by a combined use of Mossbauer spectroscopy, x-ray diffraction, and electron microscopy in order to obtain information on the nature of the iron species formed as well as the various reduction processes. Calcination at or below 1070 K mainly gives reducible Fe3+ while calcination at higher temperatures gives substitutional Fe3+ in the form of Al2-xFexO3. The Fe3+ species in the calcined samples are, by and large, present in the form of small superparamagnetic particles. Crystallization of Al2O3 from the gels is catalyzed by Fe2O3 as well as FeAl2O4. Fe (20 wt. %)/AlOOH gels calcined at or below 870 K give FeAl2O4 when reduced in hydrogen at 1070 K or lower and a ferromagnetic Fe0-Al2O3 composite (with the metallic Fe particles >100 angstrom) when reduced at 1270 K. Samples calcined at 1220 K or higher give the Fe0-Al2O3 composite when reduced in the 870-12,70 K range, but a substantial proportion of Fe3+ remains unreduced in the form of Al2-xFexO3, showing thereby the extraordinary stability of substitutional Fe3+ to reduction even at high temperatures. Besides the ferromagnetic Fe0-Al2O3 composite, high-temperature reduction of Al2-xFexO3 yields a small proportion of superparamagnetic Fe0-Al2O3 wherein small metallic particles (<100 angstrom) are embedded in the ceramic matrix. In order to preferentially obtain the Fe0-Al2O3 composite on reduction, Fe/AlOOH gels should be calcined at low temperatures (less-than-or-equal-to 1100 K); high-temperature calcination results in Al2-xFexO3. Several modes of formation of FeAl2O4 are found possible during reduction of the gels, but a novel one is that involving the reaction, 2Fe3+ + Fe0 --> 3Fe2+.