154 resultados para WAR STRAIN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of strain path change during rolling has been investigated for copper and nickel using X-ray diffraction and electron back scatter diffraction as well as crystal plasticity simulations. Four different strain paths namely: (i) unidirectional rolling; (ii) reverse rolling; (iii) two-step cross rolling and (iv) multi-step cross rolling were employed to decipher the effect of strain path change on the evolution of deformation texture and microstructure. The cross rolled samples showed weaker texture with a prominent Bs {1 1 0}< 1 1 2 > and P(B(ND)) {1 1 0}< 1 1 1 > component in contrast to the unidirectional and reverse rolled samples where strong S {1 2 3}< 6 3 4 > and Cu {1 1 2}< 1 1 1 > components were formed. This was more pronounced for copper samples compared to nickel. The cross rolled samples were characterized by lower anisotropy and Taylor factor as well as less variation in Lankford parameter. Viscoplastic self-consistent simulations indicated that slip activity on higher number of octahedral slip systems can explain the weaker texture as well as reduced anisotropy in the cross rolled samples. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term Structural Health Monitoring has gained wide acceptance in the recent pastas a means to monitor a structure and provide an early warning of an unsafe conditionusing real-time data. Utilization of structurally integrated, distributed sensors tomonitor the health of a structure through accurate interpretation of sensor signals andreal-time data processing can greatly reduce the inspection burden. The rapidimprovement of the Fiber Bragg Grating sensor technology for strain, vibration andacoustic emission measurements in recent times make them a feasible alternatives tothe traditional strain gauges transducers and conventional Piezoelectric sensors usedfor Non Destructive Evaluation (NDE) and Structural Health Monitoring (SHM).Optical fiber-based sensors offers advantages over conventional strain gauges, PVDFfilm and PZT devices in terms of size, ease of embedment, immunity fromelectromagnetic interference(EMI) and potential for multiplexing a number ofsensors. The objective of this paper is to demonstrate the feasibility of Fiber BraggGrating sensor and compare its utility with the conventional strain gauges and PVDFfilm sensors. For this purpose experiments are being carried out in the laboratory on acomposite wing of a mini air vehicle (MAV). In this paper, the results obtained fromthese preliminary experiments are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative study of strain response and mechanical properties of rammed earth prisms, has been made using Fiber Bragg Grating (FBG) sensors (optical) and clip-on extensometer (electro-mechanical). The aim of this study is to address the merits and demerits of traditional extensometer vis-à-vis FBG sensor; a uni-axial compression test has been performed on a rammed earth prism to validate its structural properties from the stress - strain curves obtained by two different methods of measurement. An array of FBG sensors on a single fiber with varying Bragg wavelengths (..B), has been used to spatially resolve the strains along the height of the specimen. It is interesting to note from the obtained stress-strain curves that the initial tangent modulus obtained using the FBG sensor is lower compared to that obtained using clip-on extensometer. The results also indicate that the strains measured by both FBG and extensometer sensor follow the same trend and both the sensors register the maximum strain value at the same time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grey tracks produced in KTiOPO4 (KTP) by applying a dc electric field have been studied through optical absorption, Raman scattering, and synchrotron x‐ray topography. A study of the optical absorption and Raman scattering from the grey‐tracked region suggests that their formation is accompanied by changes in the electronic levels of Ti4+. There is no evidence for a major structural change or disorder in the grey‐tracked region. However, the x‐ray topographs do indicate the presence of a remnant strain in the lattice, which might contribute to the observed changes in the Raman intensities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Taking polycrystalline cadmium as an example and by utilizing the predicted temperature or strain rate-dependence of the (Hall-Petch) stress-grain size parameters, a reasonably quantitative explanation is given for the grain size dependence of apparent activation volume measurements. The explanation involves the theoretical relation of these measurements to single-crystal measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The composites consisting of amorphous matrix reinforced with crystalline dendrites offer extraordinary combinations of strength, stiffness, and toughness and can be processed in bulk. Hence, they have been receiving intense research interest, with a primary focus to study their mechanical properties. In this paper, the temperature and strain rate effects on the uniaxial compression response of a tailored bulk metallic glass (BMG) composite has been investigated. Experimental results show that at temperatures ranging between ambient to 500 K and at all strain rates; the onset of plastic deformation in the composite is controlled by that in the dendrites. As the temperature is increased to the glass transition temperature of the matrix and beyond, flow in the amorphous matrix occurs readily and hence it dictates the composite's response. The role of the constituent phases in controlling the deformation mechanism of the composite has been verified by assessing the strain rate sensitivity and the activation volume for deformation. The composite is rate sensitive at room temperature with values of strain rate sensitivity and activation volume being similar to that of the dendrites. At test temperatures near to the glass transition temperature, the composite however becomes rate-insensitive corresponding to that of the matrix phase. At low strain rates, serrated flow akin to that of dynamic strain ageing in crystalline alloys was observed and the serration magnitude decreases with increasing temperature. Initiation of the shear bands at the dendrite/matrix interface and propagation of them through the matrix ligaments until their arrest at another interface is the responsible mechanism for this. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electromagnetic characteristics like absorption and electric field distributions of metallic carbon nanotubes are simulated using the discrete dipole approximation. Absorption of electromagnetic energy over a range of frequencies are studied for both parallel and perpendicular incidence of light to the axis of carbon nanotube. Our simulations show 30% enhancement of electric field in the radial direction for nanotubes with axial strain of 0.2 when compared to unstrained nanotubes in case of parallel incidence of light. Simulations for perpendicular incidence of light show an oscillatory behavior for the electric field in the axial direction. Analysis of simulation results indicate potential applications in designing nanostructured antennae and electromagnetic transmission/shielding using CNT-composite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes dispersed in polymer matrix have been aligned in the form of fibers and interconnects and cured electrically and by UV light. Conductivity and effective semiconductor tunneling against reverse to forward bias field have been designed to have differentiable current-voltage response of each of the fiber/channel. The current-voltage response is a function of the strain applied to the fibers along axial direction. Biaxial and shear strains are correlated by differentiating signals from the aligned fibers/channels. Using a small doping of magnetic nanoparticles in these composite fibers, magneto-resistance properties are realized which are strong enough to use the resulting magnetostriction as a state variable for signal processing and computing. Various basic analog signal processing tasks such as addition, convolution and filtering etc. can be performed. These preliminary study shows promising application of the concept in combined analog-digital computation in carbon nanotube based fibers. Various dynamic effects such as relaxation, electric field dependent nonlinearities and hysteresis on the output signals are studied using experimental data and analytical model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the effect of edge structures on the edge energy and stress of BN nanoribbons. Ab initio density functional calculations show that the armchair edge is lower in energy than the zigzag edge by 0.43 eV/angstrom. Both types of the edges are under the compressive stress. The zigzag edges are mechanically more stable than the armchair edges. Based on the calculated edge energies, the equilibrium shape of the BN flakes are found to be regular hexagonal, and dominated by the armchair edges. The zigzag ribbons are found to be half-metallic, whereas the armchair ribbons are semiconducting.