124 resultados para Food texture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-human primate populations, other than responding appropriately to naturally occurring challenges, also need to cope with anthropogenic factors such as environmental pollution, resource depletion, and habitat destruction. Populations and individuals are likely to show considerable variations in food extraction abilities, with some populations and individuals more efficient than others at exploiting a set of resources. In this study, we examined among urban free-ranging bonnet macaques, Macaca radiata (a) local differences in food extraction abilities, (b) between-individual variation and within-individual consistency in problem-solving success and the underlying problem-solving characteristics, and (c) behavioral patterns associated with higher efficiency in food extraction. When presented with novel food extraction tasks, the urban macaques having more frequent exposure to novel physical objects in their surroundings, extracted food material from PET bottles and also solved another food extraction task (i.e., extracting an orange from a wire mesh box), more often than those living under more natural conditions. Adults solved the tasks more frequently than juveniles, and females more frequently than males. Both solution-technique and problem-solving characteristics varied across individuals but remained consistent within each individual across the successive presentations of PET bottles. The macaques that solved the tasks showed lesser within-individual variation in their food extraction behavior as compared to those that failed to solve the tasks. A few macaques appropriately modified their problem-solving behavior in accordance with the task requirements and solved the modified versions of the tasks without trial-and-error learning. These observations are ecologically relevant - they demonstrate considerable local differences in food extraction abilities, between-individual variation and within-individual consistency in food extraction techniques among free-ranging bonnet macaques, possibly affecting the species' local adaptability and resilience to environmental changes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructure and texture are known to undergo drastic modifications due to trace hypoeutectic boron addition (similar to 0.1wt.%) for various titanium alloys e.g. Ti-6Al-4V. The deformation behaviour of such an alloy Ti-6Al-4V-0.1B is investigated in the (+) phase field and compared against that of the base alloy Ti-6Al-4V studied under selfsame conditions. The deformation microstructures for the two alloys display bending and kinking of lamellae in near and softening via globularization of lamella in near phase regimes, respectively. The transition temperature at which pure slip based deformation changes to softening is lower for the boron added alloy. The presence of TiB particles is largely held attributable for the early softening of Ti-6Al-4V-0.1B alloy. The compression texture of both the alloys carry signature of pure phase defamation at lower temperature and phase transformation near the transus temperature. Texture is influenced by a complex interplay of the deformation and transformation processes in the intermediate temperature range. The contribution from phase transformation is prominent for Ti-6Al-4V-0.1B alloy at comparatively lower temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recrystallization behaviour of cold-rolled nanocrystalline (nc) nickel has been studied at temperatures between 573 and 1273 K using bulk texture measurements and electron back-scattered diffraction. The texture in nc nickel is different from that of its microcrystalline counterpart, consisting of a strong Goss (G) and rotated Goss (RG) components at 773 K instead of the typical cube component. The texture evolution in nc Ni has been attributed to the prior deformation textures and nucleation advantage of G and RG grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low level, denuded, laterite landscape of coastal Uttara Kannada has a rich diversity of monsoon herbs, including threatened and newly discovered ones. Our study reveals that honey bees congregate on the ephemeral herb community of Utricularias, Eriocaulons and Impatiens during their gregarious monsoon flowering period. Apis dorsata had highest visitations on Utricularias, Impatiens and Flacourtia indica, whereas Trigona preferred Eriocaulons. Laterite herb flora merits conservation efforts as a keystone food resource for the insect community, especially for honey bees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The micromechanical aspects of rolling texture development in Ni-40 wt.% Co alloy during very large reductions (up to epsilon(t) = 3.9) have been studied. The alloy showed a typical Cu-type texture up to a true strain of epsilon(t) = 3; however, the texture undergoes an abrupt transition to Bs-type on further rolling to epsilon(t) approximate to 4. (The Bs-type texture, here, comprises almost equal fractions of Goss and Bs components.) Microstructural observations, at early stages, show that deformation is accommodated entirely by slip, and very little presence of deformation twinning is observed to explain the texture transition. However, at much higher reduction levels, micrographs show a high fraction of Cu-type shear bands. These bands are predominantly found in Cu-oriented grains and the crystallites inside the shear bands are preferentially oriented towards Goss, which could explain the final texture evolution. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fe0.05Co0.95Sb2.875Te0.125, a double-element-substituted skutterudite, was prepared by induction melting, annealing, and hot pressing (HP). The hot-pressed sample was subjected to high-pressure torsion (HPT) with 4 GPa pressure at 673 K. X-ray diffraction was performed before and after HPT processing of the sample; the skutterudite phase was observed as a main phase, but an additional impurity phase (CoSb2) was observed in the HPT-processed sample. Surface morphology was determined by high-resolution scanning electron microscopy. In the HP sample, coarse grains with sizes in the range of approximately 100 nm to 300 nm were obtained. They changed to fine grains with a reduction in grain size to 75 nm to 125 nm after HPT due to severe plastic deformation. Crystallographic texture, as measured by x-ray diffraction, indicated strengthening of (112), (102) poles and weakening of the (123) pole of the HPT-processed sample. Raman-active vibrational modes showed a peak position shift towards the lower energy side, indicating softening of the modes after HPT. The distortion of the rectangular Sb-Sb rings leads to broadening of Sb-Sb vibrational modes due to local strain fluctuation. In the HPT process, a significant effect on the shorter Sb-Sb bond was observed as compared with the longer Sb-Sb bond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystallographic texture is perceived to play an important role in controlling material properties. However, the influence of texture in modulating the properties of biomedical materials has not been well investigated. In this work, commercially pure titanium (cp-Ti) was processed through six different routes to generate a variety of textures. The effect of texture on mechanical properties, corrosion behavior, cell proliferation and osteogenesis was characterized for potential use in orthopedic applications. The presence of closely packed, low-energy crystallographic planes at the material surface was influenced by the volume fraction of the components in the overall texture, thereby influencing surface energy and corrosion behavior. Texture modulated osteoblast proliferation through variations in surface water wettability. It also affected mineralization by possibly influencing the coherency between the substrate and calcium phosphate deposits. This study demonstrates that crystallographic texture can be an important tool in improving the properties of biomaterials to achieve the enhanced performance of biomedical implants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigates the critical role of deformation twinning and Bs-type shear bands in the evolution of deformation texture in a low stacking fault energy Ni-60Co alloy up to very large rolling strain (epsilon(t) approximate to 4). The alloy develops a strong brass-type rolling texture, and its formation is initiated at the early stages of deformation. Extensive twinning is observed at the intermediate stages of deformation, which causes significant texture reorientation towards alpha-fiber. A pseudo-in-situ electron back-scattered diffraction technique adopted to capture orientation changes within individual grains during the early stages suggests that twinning should be subsequently aided by crystallographic slip to attain alpha-fiber (< 1 1 0 >parallel to ND) orientations. Beyond 40% reduction, deformation is dominated by Bs-type shear bands, and the banding coincides with the evolution of < 1 1 1 >parallel to ND components. The volume fraction of shear bands is significant at higher strains, and crystallites within the bands preferentially show < 1 1 0 >parallel to ND components. The absence of the Cu {1 1 2}< 1 1 1 > component in the initial texture, and subsequently during rolling, indicates that, for the evolution of a brass-type texture, the presence of the Cu component is not a necessary condition. The final rolling texture is a synergistic effect of deformation twinning and shear banding. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, morphology, microstructure, and electrochemical behavior of Zn coatings containing non-toxic additives have been investigated. Zn coatings were electrodeposited over mild steel substrates using Zn sulphate baths containing four different organic additives: sodium gluconate, dextrose, dextrin, and saccharin. All these additives are ``green'' and can be derived from food contents. Morphological and structural characterization using electron microscopy, x-ray diffraction, and texture co-efficient analysis revealed an appreciable alteration in the morphology and texture of the deposit depending on the type of additive used in the Zn plating bath. All the Zn coatings, however, were nano-crystalline irrespective of the type of additive used. Polarization and electrochemical impedance spectroscopic analysis, used to investigate the effect of the change in microstructure and morphology on corrosion resistance behavior, illustrated an improved corrosion resistance for Zn deposits obtained from plating bath containing additives as compared to the pure Zn coatings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultra high molecular weight polyethylene (PE) is a structural polymer widely used in biomedical implants. The mechanical properties of PE can be improved either by controlled crystalline orientation (texture) or by the addition of reinforcing agents. However, the combinatorial effect has not received much attention. The objective of this study was to characterize the structure and mechanical properties of PE composites incorporating multiwall carbon nanotubes (MWCNT) and reduced graphene oxide (RGO) subjected to hot rolling. The wide angle X-ray diffraction studies revealed that mechanical deformation resulted in a mixture of orthorhombic and monoclinic crystals. Furthermore, the presence of nanoparticles resulted in lower crystallinity in PE with smaller crystallite size, more so in RGO than in MWCNT composites. Rolling strengthened the texture of both orthorhombic and the monoclinic phases in PE. Presence of RGO weakened the texture of both phases of PE after rolling whereas MWCNT only mildly weakened the texture. This resulted in a reduction in the elastic modulus of RGO composites whereas moduli of neat polymer and the MWCNT composite increased after rolling. This study provides new insight into the role of nanoparticles in texture evolution during polymer processing with implications for processing of structural polymer composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium and its alloys are an emerging class of resorbable materials for orthopedic and cardiovascular applications. The typical strategy underlying the development of these materials involves the control of material processing routes and the addition of alloying elements. Crystallographic texture is known to control bulk mechanical as well as surface properties. However, its role in determining the properties of magnesium for implant materials has not been well studied. In this work, an extruded rod of pure magnesium was cut in multiple directions to generate samples with different textures. It was found that texture significantly affected the strength and ductility of magnesium. Corrosion rates in Hank's solution decreased with the increased presence of low energy basal planes at the surface. In vitro cell studies revealed that changes in texture did not induce cytotoxicity. Thus, the control of texture in magnesium based implants could be used to tailor the mechanical properties and the resorption rates without compromising cytocompatibility. This study elucidates the importance of texture in the use of magnesium as a resorbable biomaterial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the effects of crystallographic texture and microstructure on the elastic modulus of different grades of steel have been collected from the available literature and put in one place. It is expected that this will help researchers in their understanding of both the fundamental and the practical aspects of the different grades of steel used for various purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shape and texture are both important properties of visual objects, but texture is relatively less understood. Here, we characterized neuronal responses to discrete textures in monkey inferotemporal (IT) cortex and asked whether they can explain classic findings in human texture perception. We focused on three classic findings on texture discrimination: 1) it can be easy or hard depending on the constituent elements; 2) it can have asymmetries, and 3) it is reduced for textures with randomly oriented elements. We recorded neuronal activity from monkey inferotemporal (IT) cortex and measured texture perception in humans for a variety of textures. Our main findings are as follows: 1) IT neurons show congruent selectivity for textures across array size; 2) textures that were easy for humans to discriminate also elicited distinct patterns of neuronal activity in monkey IT; 3) texture pairs with asymmetries in humans also exhibited asymmetric variation in firing rate across monkey IT; and 4) neuronal responses to randomly oriented textures were explained by an average of responses to homogeneous textures, which rendered them less discriminable. The reduction in discriminability of monkey IT neurons predicted the reduced discriminability in humans during texture discrimination. Taken together, our results suggest that texture perception in humans is likely based on neuronal representations similar to those in monkey IT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface texture influences friction during sliding contact conditions. In the present investigation, the effect of surface texture and roughness of softer and harder counter materials on friction during sliding was analyzed using an inclined scratch testing system. In the experiments, two test configurations, namely (a) steel balls against aluminum alloy flats of different surface textures and (b) aluminum alloy pins against steel flats of different surface textures, are utilized. The surface textures were classified into unidirectionally ground, 8-ground, and randomly polished. For a given texture, the roughness of the flat surfaces was varied using grinding or polishing methods. Optical profilometer and scanning electron microscope were used to characterize the contact surfaces before and after the experiments. Experimental results showed that the surface textures of both harder and softer materials are important in controlling the frictional behavior. The softer material surface textures showed larger variations in friction between ground and polished surfaces. However, the harder material surface textures demonstrated a better control over friction among the ground surfaces. Although the effect of roughness on friction was less significant when compared to textures, the harder material roughness showed better correlations when compared to the softer material roughness.