148 resultados para density


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we report the mechanical and biocompatibility properties of injection-molded high-density polyethylene (HDPE) composites reinforced with 40 wt % ceramic filler [hydroxyapatite (HA) and/or Al2O3] and 2 wt % titanate as a coupling agent. The mechanical property measurements revealed that a combination of a maximum tensile strength of 18.7 MPa and a maximum tensile modulus of about 855 MPa could be achieved with the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites. For the same composite composition, the maximum compression strength was determined to be 71.6 MPa and the compression modulus was about 660 MPa. The fractrography study revealed the uniform distribution of ceramic fillers in the semicrystalline HDPE matrix. The cytocompatibility study with osteoblast-like SaOS2 cells confirmed extensive cell adhesion and proliferation on the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites. The cell viability analysis with the 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay revealed a statistically significant difference between the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites and sintered HA for various culture durations of upto 7 days. The difference in cytocompatibility properties among the biocomposites is explained in terms of the difference in the protein absorption behavior. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we investigate the effect of terminal substituents on the dynamics of spin and charge transport in donor-acceptor substituted polyenes [D-(CH)(x)-A] chains, also known as push-pull polyenes. We employ a long-range correlated model Hamiltonian for the D-(CH)(x)-A system, and time-dependent density matrix renormalization group technique for time propagating the wave packet obtained by injecting a hole at a terminal site, in the ground state of the system. Our studies reveal that the end groups do not affect spin and charge velocities in any significant way, but change the amount of charge transported. We have compared these push-pull systems with donor-acceptor substituted polymethine imine (PMI), D-(CHN)(x)-A, systems in which besides electron affinities, the nature of p(z) orbitals in conjugation also alternate from site to site. We note that spin and charge dynamics in the PMIs are very different from that observed in the case of push-pull polyenes, and within the time scale of our studies, transport of spin and charge leads to the formation of a ``quasi-static'' state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 30-d course of oral administration of a semipurified extract of the root of Withania somnifera consisting predominantly of withanolides and withanosides reversed behavioral deficits, plaque pathology, accumulation of beta-amyloid peptides (A beta) and oligomers in the brains of middle-aged and old APP/PS1 Alzheimer's disease transgenic mice. It was similarly effective in reversing behavioral deficits and plaque load in APPSwInd mice (line J20). The temporal sequence involved an increase in plasma A beta and a decrease in brain A beta monomer after 7 d, indicating increased transport of A beta from the brain to the periphery. Enhanced expression of low-density lipoprotein receptor-related protein (LRP) in brain microvessels and the A beta-degrading protease neprilysin (NEP) occurred 14-21 d after a substantial decrease in brain A beta levels. However, significant increase in liver LRP and NEP occurred much earlier, at 7 d, and were accompanied by a rise in plasma sLRP, a peripheral sink for brain A beta. In WT mice, the extract induced liver, but not brain, LRP and NEP and decreased plasma and brain A beta, indicating that increase in liver LRP and sLRP occurring independent of A beta concentration could result in clearance of A beta. Selective down-regulation of liver LRP, but not NEP, abrogated the therapeutic effects of the extract. The remarkable therapeutic effect of W. somnifera mediated through up-regulation of liver LRP indicates that targeting the periphery offers a unique mechanism for A beta clearance and reverses the behavioral deficits and pathology seen in Alzheimer's disease models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy and charge aspects of two types of ion association - between oppositely-charged and between like-charged species - were quantified using the topological analysis of the electron density function derived from the low-temperature X-ray diffraction experiment for a crystal of aminoacetonitrile picrate (sp. gr. Cmca, Z = 8, R = 0.0187), providing an experimental evidence of their ``equal rights'' in crystal packing formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High temperature bonded interface indentation experiments are carried out on a Zr based bulk metallic glass (BMG) to examine the plastic deformation characteristics in subsurface deformation zone under a Vickers indenter. The results show that the shear bands are semi-circular in shape and propagate in radial direction. At all temperatures the inter-band spacing along the indentation axis is found to increase with increasing distance from the indenter tip. The average shear band spacing monotonically increases with temperature whereas the shear band induced plastic deformation zone is invariant with temperature. These observations are able to explain the increase in pressure sensitive plastic flow of BMGs with temperature. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A density matrix renormalization group (DMRG) algorithm is presented for the Bethe lattice with connectivity Z = 3 and antiferromagnetic exchange between nearest-neighbor spins s = 1/2 or 1 sites in successive generations g. The algorithm is accurate for s = 1 sites. The ground states are magnetic with spin S(g) = 2(g)s, staggered magnetization that persists for large g > 20, and short-range spin correlation functions that decrease exponentially. A finite energy gap to S > S(g) leads to a magnetization plateau in the extended lattice. Closely similar DMRG results for s = 1/2 and 1 are interpreted in terms of an analytical three-site model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations into the variation of self-diffusivity with solute radius, density, and degree of disorder of the host medium is explored. The system consists of a binary mixture of a relatively smaller sized solute, whose size is varied and a larger sized solvent interacting via Lennard-Jones potential. Calculations have been performed at three different reduced densities of 0.7, 0.8, and 0.933. These simulations show that diffusivity exhibits a maximum for some intermediate size of the solute when the solute diameter is varied. The maximum is found at the same size of the solute at all densities which is at variance with the prediction of the levitation effect. In order to understand this anomaly, additional simulations were carried out in which the degree of disorder has been varied while keeping the density constant. The results show that the diffusivity maximum gradually disappears with increase in disorder. Disorder has been characterized by means of the minimal spanning tree. Simulations have also been carried out in which the degree of disorder is constant and only the density is altered. The results from these simulations show that the maximum in diffusivity now shifts to larger distances with decrease in density. This is in agreement with the changes in void and neck distribution with density of the host medium. These results are in excellent agreement with the predictions of the levitation effect. They suggest that the effect of disorder is to shift the maximum in diffusivity towards smaller solute radius while that of the decrease in density is to shift it towards larger solute radius. Thus, in real systems where the degree of disorder is lower at higher density and vice versa, the effect due to density and disorder have opposing influences. These are confirmed by the changes seen in the velocity autocorrelation function, self part of the intermediate scattering function and activation energy. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.3701619]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the last decade, there is a growing need for patterned biomolecules for various applications ranging from diagnostic devices to enabling fundamental biological studies with high throughput. Protein arrays facilitate the study of protein-protein, protein-drug or protein-DNA interactions as well as highly multiplexed immunosensors based on antibody-antigen recognition. Protein microarrays are typically fabricated using piezoelectric inkjet printing with resolution limit of similar to 70-100 mu m limiting the array density. A considerable amount of research has been done on patterning biomolecules using customised biocompatible photoresists. Here, a simple photolithographic process for fabricating protein microarrays on a commercially available diazo-naphthoquinone-novolac-positive tone photoresist functionalised with 3-aminopropyltriethoxysilane is presented. The authors demonstrate that proteins immobilised using this procedure retain their activity and therefore form functional microarrays with the array density limited only by the resolution of lithography, which is more than an order of magnitude compared with inkjet printing. The process described here may be useful in the integration of conventional semiconductor manufacturing processes with biomaterials relevant for the creation of next-generation bio-chips.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Othman et al. (Intermetallics 2012;22:1-6) recently published a manuscript on ``Effects of current density on the formation and microstructure of Sn-9Zn, Sn-8Zn-3Bi and Sn-3Ag-0.5Cu solder joints''. We found problems in calculation of diffusion parameters. Even the comment on the formation of Cu5Zn8 instead of Cu6Sn5 is not correct. In this comment, we have explained the correct procedure to calculate the diffusion coefficients. Further, we have also explained the reason for the formation of Cu5Zn8 instead of Cu6Sn5 in the Cu/Sn-9Zn system. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a method to fabricate high-density biological microarrays using lithographic patterning of polyelectrolyte multi layers formed by spin assisted electrostatic layer-by-layer assembly. Proteins or DNA can be immobilized on the polyelectrolyte patterns via electrostatic attachment leading to functional microarrays. As the immobilization is done using electrostatically assembled polyelectrolyte anchor, this process is substrate independent and is fully compatible with a standard semiconductor fabrication process flow. Moreover, the electrostatic assembly of the anchor layer is a fast process with reaction saturation times of the order of a few minutes unlike covalent schemes that typically require hours to reach saturation. The substrate independent nature of this technique is demonstrated by functionalizing glass slides as well as regular transparency sheets using the same procedure. Using a model protein assay, we demonstrate that the non-covalent immobilization scheme described here has competitive performance compared to conventional covalent immobilization schemes described in literature. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The topological and the electrostatic properties of the aspirin drug molecule were determined from high-resolution X-ray diffraction data at 90 K, and the corresponding results are compared with the theoretical calculations. The electron density at the bond critical point of all chemical bonds induding the intermolecular interactions of aspirin has been quantitatively described using Bader's quantum theory of ``Atoms in Molecules''. The electrostatic potential of the molecule emphasizes the preferable binding sites of the drug and the interaction features of the molecule, which are crucial for drug-receptor recognition. The topological analysis of hydrogen bonds reveals the strength of intermolecular interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the size-dependent density of nanoparticles and nanostructured materials keeping the recent experimental results in mind. The density is predicted to increase with decreasing size for nanoparticles but it can decrease with size for nanostructured materials that corroborates the experimental results reported in the literature. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The toplogical features of a sporadic trifurcated C-H center dot center dot center dot O interaction region, where an oxygen atom acts as an acceptor of three weak hydrogen bonds, has been investigated by experimental and theoretical charge density analysis of ferulic acid. The interaction energy of the asymmetric molecular dimer formed by the trifurcated C-H center dot center dot center dot O motif, based on the multipolar model, is shown to be greater than the corresponding asymmetric O-H center dot center dot center dot O dimer in this crystal structure. Further, the hydrogen bond energies associated with these interaction motifs have been estimated from the local kinetic and potential energy densities at the bond critical points. The trends suggest that the interaction energy of the trifurcated C-H center dot center dot center dot O region is comparable to that of a single O-H center dot center dot center dot O hydrogen bond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polypyrrole (PPy) has been synthesized electrochemically on platinum substrate by varying synthesis temperature and dopant concentration. The charge transport in PPy has been investigated as a function of temperature for both in-plane and out-of-plane geometry in a wide temperature range of 5K-300 K. The charge transport showed strong anisotropy and various mechanisms were used to explain the transport. The conductivity ratio, sigma(r) = sigma(300 K)/sigma(5 K) is calculated for each sample to quantify the relative disorder. At all the temperatures, the conductivity values for in-plane transport are found to be more for PPy synthesized at lower temperature, while the behavior is found to be different for out-of-plane transport. The carrier density is found to play a crucial role in case of in-plane transport. An effort has been made to correlate charge transport to morphology by analyzing temperature and frequency dependence of conductivity. Charge transport in lateral direction is found to be dominated by hopping whereas tunneling mechanisms are dominated in vertical direction. Parameters such as density of states at the Fermi level N(E-F)], average hopping distance (R), and average hopping energy (W) have been estimated for each samples in both geometry. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4775405]