96 resultados para support vector machines
Resumo:
The swelling pressure of soil depends upon various soil parameters such as mineralogy, clay content, Atterberg's limits, dry density, moisture content, initial degree of saturation, etc. along with structural and environmental factors. It is very difficult to model and analyze swelling pressure effectively taking all the above aspects into consideration. Various statistical/empirical methods have been attempted to predict the swelling pressure based on index properties of soil. In this paper, the computational intelligence techniques artificial neural network and support vector machine have been used to develop models based on the set of available experimental results to predict swelling pressure from the inputs; natural moisture content, dry density, liquid limit, plasticity index, and clay fraction. The generalization of the model to new set of data other than the training set of data is discussed which is required for successful application of a model. A detailed study of the relative performance of the computational intelligence techniques has been carried out based on different statistical performance criteria.
Resumo:
The swelling pressure of soil depends upon various soil parameters such as mineralogy, clay content, Atterberg's limits, dry density, moisture content, initial degree of saturation, etc. along with structural and environmental factors. It is very difficult to model and analyze swelling pressure effectively taking all the above aspects into consideration. Various statistical/empirical methods have been attempted to predict the swelling pressure based on index properties of soil. In this paper, the computational intelligence techniques artificial neural network and support vector machine have been used to develop models based on the set of available experimental results to predict swelling pressure from the inputs; natural moisture content, dry density, liquid limit, plasticity index, and clay fraction. The generalization of the model to new set of data other than the training set of data is discussed which is required for successful application of a model. A detailed study of the relative performance of the computational intelligence techniques has been carried out based on different statistical performance criteria.
Resumo:
We present a low-complexity algorithm for intrusion detection in the presence of clutter arising from wind-blown vegetation, using Passive Infra-Red (PIR) sensors in a Wireless Sensor Network (WSN). The algorithm is based on a combination of Haar Transform (HT) and Support-Vector-Machine (SVM) based training and was field tested in a network setting comprising of 15-20 sensing nodes. Also contained in this paper is a closed-form expression for the signal generated by an intruder moving at a constant velocity. It is shown how this expression can be exploited to determine the direction of motion information and the velocity of the intruder from the signals of three well-positioned sensors.
Resumo:
Gaussian Processes (GPs) are promising Bayesian methods for classification and regression problems. They have also been used for semi-supervised learning tasks. In this paper, we propose a new algorithm for solving semi-supervised binary classification problem using sparse GP regression (GPR) models. It is closely related to semi-supervised learning based on support vector regression (SVR) and maximum margin clustering. The proposed algorithm is simple and easy to implement. It gives a sparse solution directly unlike the SVR based algorithm. Also, the hyperparameters are estimated easily without resorting to expensive cross-validation technique. Use of sparse GPR model helps in making the proposed algorithm scalable. Preliminary results on synthetic and real-world data sets demonstrate the efficacy of the new algorithm.
Resumo:
This study describes two machine learning techniques applied to predict liquefaction susceptibility of soil based on the standard penetration test (SPT) data from the 1999 Chi-Chi, Taiwan earthquake. The first machine learning technique which uses Artificial Neural Network (ANN) based on multi-layer perceptions (MLP) that are trained with Levenberg-Marquardt backpropagation algorithm. The second machine learning technique uses the Support Vector machine (SVM) that is firmly based on the theory of statistical learning theory, uses classification technique. ANN and SVM have been developed to predict liquefaction susceptibility using corrected SPT (N-1)(60)] and cyclic stress ratio (CSR). Further, an attempt has been made to simplify the models, requiring only the two parameters (N-1)(60) and peck ground acceleration (a(max)/g)], for the prediction of liquefaction susceptibility. The developed ANN and SVM models have also been applied to different case histories available globally. The paper also highlights the capability of the SVM over the ANN models.
Resumo:
Due to its wide applicability, semi-supervised learning is an attractive method for using unlabeled data in classification. In this work, we present a semi-supervised support vector classifier that is designed using quasi-Newton method for nonsmooth convex functions. The proposed algorithm is suitable in dealing with very large number of examples and features. Numerical experiments on various benchmark datasets showed that the proposed algorithm is fast and gives improved generalization performance over the existing methods. Further, a non-linear semi-supervised SVM has been proposed based on a multiple label switching scheme. This non-linear semi-supervised SVM is found to converge faster and it is found to improve generalization performance on several benchmark datasets. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Many shallow landslides are triggered by heavy rainfall on hill slopes resulting in enormous casualties and huge economic losses in mountainous regions. Hill slope failure usually occurs as soil resistance deteriorates in the presence of the acting stress developed due to a number of reasons such as increased soil moisture content, change in land use causing slope instability, etc. Landslides triggered by rainfall can possibly be foreseen in real time by jointly using rainfall intensity-duration and information related to land surface susceptibility. Terrain analysis applications using spatial data such as aspect, slope, flow direction, compound topographic index, etc. along with information derived from remotely sensed data such as land cover / land use maps permit us to quantify and characterise the physical processes governing the landslide occurrence phenomenon. In this work, the probable landslide prone areas are predicted using two different algorithms – GARP (Genetic Algorithm for Rule-set Prediction) and Support Vector Machine (SVM) in a free and open source software package - openModeller. Several environmental layers such as aspect, digital elevation data, flow accumulation, flow direction, slope, land cover, compound topographic index, and precipitation data were used in modelling. A comparison of the simulated outputs, validated by overlaying the actual landslide occurrence points showed 92% accuracy with GARP and 96% accuracy with SVM in predicting landslide prone areas considering precipitation in the wettest month whereas 91% and 94% accuracy were obtained from GARP and SVM considering precipitation in the wettest quarter of the year.
Resumo:
A geometric and non parametric procedure for testing if two finite set of points are linearly separable is proposed. The Linear Separability Test is equivalent to a test that determines if a strictly positive point h > 0 exists in the range of a matrix A (related to the points in the two finite sets). The algorithm proposed in the paper iteratively checks if a strictly positive point exists in a subspace by projecting a strictly positive vector with equal co-ordinates (p), on the subspace. At the end of each iteration, the subspace is reduced to a lower dimensional subspace. The test is completed within r ≤ min(n, d + 1) steps, for both linearly separable and non separable problems (r is the rank of A, n is the number of points and d is the dimension of the space containing the points). The worst case time complexity of the algorithm is O(nr3) and space complexity of the algorithm is O(nd). A small review of some of the prominent algorithms and their time complexities is included. The worst case computational complexity of our algorithm is lower than the worst case computational complexity of Simplex, Perceptron, Support Vector Machine and Convex Hull Algorithms, if d
Resumo:
Many downscaling techniques have been developed in the past few years for projection of station-scale hydrological variables from large-scale atmospheric variables simulated by general circulation models (GCMs) to assess the hydrological impacts of climate change. This article compares the performances of three downscaling methods, viz. conditional random field (CRF), K-nearest neighbour (KNN) and support vector machine (SVM) methods in downscaling precipitation in the Punjab region of India, belonging to the monsoon regime. The CRF model is a recently developed method for downscaling hydrological variables in a probabilistic framework, while the SVM model is a popular machine learning tool useful in terms of its ability to generalize and capture nonlinear relationships between predictors and predictand. The KNN model is an analogue-type method that queries days similar to a given feature vector from the training data and classifies future days by random sampling from a weighted set of K closest training examples. The models are applied for downscaling monsoon (June to September) daily precipitation at six locations in Punjab. Model performances with respect to reproduction of various statistics such as dry and wet spell length distributions, daily rainfall distribution, and intersite correlations are examined. It is found that the CRF and KNN models perform slightly better than the SVM model in reproducing most daily rainfall statistics. These models are then used to project future precipitation at the six locations. Output from the Canadian global climate model (CGCM3) GCM for three scenarios, viz. A1B, A2, and B1 is used for projection of future precipitation. The projections show a change in probability density functions of daily rainfall amount and changes in the wet and dry spell distributions of daily precipitation. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Prediction of variable bit rate compressed video traffic is critical to dynamic allocation of resources in a network. In this paper, we propose a technique for preprocessing the dataset used for training a video traffic predictor. The technique involves identifying the noisy instances in the data using a fuzzy inference system. We focus on three prediction techniques, namely, linear regression, neural network and support vector regression and analyze their performance on H.264 video traces. Our experimental results reveal that data preprocessing greatly improves the performance of linear regression and neural network, but is not effective on support vector regression.
Resumo:
A two-stage methodology is developed to obtain future projections of daily relative humidity in a river basin for climate change scenarios. In the first stage, Support Vector Machine (SVM) models are developed to downscale nine sets of predictor variables (large-scale atmospheric variables) for Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES) (A1B, A2, B1, and COMMIT) to R (H) in a river basin at monthly scale. Uncertainty in the future projections of R (H) is studied for combinations of SRES scenarios, and predictors selected. Subsequently, in the second stage, the monthly sequences of R (H) are disaggregated to daily scale using k-nearest neighbor method. The effectiveness of the developed methodology is demonstrated through application to the catchment of Malaprabha reservoir in India. For downscaling, the probable predictor variables are extracted from the (1) National Centers for Environmental Prediction reanalysis data set for the period 1978-2000 and (2) simulations of the third-generation Canadian Coupled Global Climate Model for the period 1978-2100. The performance of the downscaling and disaggregation models is evaluated by split sample validation. Results show that among the SVM models, the model developed using predictors pertaining to only land location performed better. The R (H) is projected to increase in the future for A1B and A2 scenarios, while no trend is discerned for B1 and COMMIT.
Resumo:
Genetic Algorithm for Rule-set Prediction (GARP) and Support Vector Machine (SVM) with free and open source software (FOSS) - Open Modeller were used to model the probable landslide occurrence points. Environmental layers such as aspect, digital elevation, flow accumulation, flow direction, slope, land cover, compound topographic index and precipitation have been used in modeling. Simulated output of these techniques is validated with the actual landslide occurrence points, which showed 92% (GARP) and 96% (SVM) accuracy considering precipitation in the wettest month and 91% and 94% accuracy considering precipitation in the wettest quarter of the year.
Resumo:
In many real world prediction problems the output is a structured object like a sequence or a tree or a graph. Such problems range from natural language processing to compu- tational biology or computer vision and have been tackled using algorithms, referred to as structured output learning algorithms. We consider the problem of structured classifi- cation. In the last few years, large margin classifiers like sup-port vector machines (SVMs) have shown much promise for structured output learning. The related optimization prob -lem is a convex quadratic program (QP) with a large num-ber of constraints, which makes the problem intractable for large data sets. This paper proposes a fast sequential dual method (SDM) for structural SVMs. The method makes re-peated passes over the training set and optimizes the dual variables associated with one example at a time. The use of additional heuristics makes the proposed method more efficient. We present an extensive empirical evaluation of the proposed method on several sequence learning problems.Our experiments on large data sets demonstrate that the proposed method is an order of magnitude faster than state of the art methods like cutting-plane method and stochastic gradient descent method (SGD). Further, SDM reaches steady state generalization performance faster than the SGD method. The proposed SDM is thus a useful alternative for large scale structured output learning.
Resumo:
This paper describes a new method of color text localization from generic scene images containing text of different scripts and with arbitrary orientations. A representative set of colors is first identified using the edge information to initiate an unsupervised clustering algorithm. Text components are identified from each color layer using a combination of a support vector machine and a neural network classifier trained on a set of low-level features derived from the geometric, boundary, stroke and gradient information. Experiments on camera-captured images that contain variable fonts, size, color, irregular layout, non-uniform illumination and multiple scripts illustrate the robustness of the method. The proposed method yields precision and recall of 0.8 and 0.86 respectively on a database of 100 images. The method is also compared with others in the literature using the ICDAR 2003 robust reading competition dataset.
Resumo:
This paper presents an efficient approach to the modeling and classification of vehicles using the magnetic signature of the vehicle. A database was created using the magnetic signature collected over a wide range of vehicles(cars). A vehicle is modeled as an array of magnetic dipoles. The strength of the magnetic dipole and the separation between the magnetic dipoles varies for different vehicles and is dependent on the metallic composition and configuration of the vehicle. Based on the magnetic dipole data model, we present a novel method to extract a feature vector from the magnetic signature. In the classification of vehicles, a linear support vector machine configuration is used to classify the vehicles based on the obtained feature vectors.