226 resultados para Reduces Infarct Size


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a simple and rapid process for the room-temperature synthesis of gold nanoparticles using tannic acid, a green reagent, as both the reducing and stabilising agent. We systematically investigated the effect of pH on the size distribution of nanoparticles synthesized. Based on induction time and zeta- potential measurements, we show that particle size distribution is controlled by a fine balance between the rates of reduction (determined by the initial pH of reactants) and coalescence (determined by the pH of the reaction mixture) in the initial period of growth. This insight led to the optimal batch process for size-controlled synthesis of 2-10 nm gold nanoparticles - slow addition (within 10 minutes) of chloroauric acid into tannic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of small amounts of B to Ti-6Al-4V alloy reduces the as-cast grain size by an order of magnitude and introduces TiB phase into the microstructure. The effects of these microstructural modifications on both the high cycle fatigue and cyclic stress-strain response were investigated. Experimental results show that B addition markedly enhances the fatigue strength of the alloy; however, the influence of prior-beta grain size was found to be only marginal. The presence of TiB particles in the matrix appears to be beneficial with the addition of 0.55 wt.% B to Ti-6Al-4V enhancing the fatigue strength by more than 50%. Strain-controlled fatigue experiments reveal softening in the cyclic stress-strain response, which increases with the B content in the alloy. Transmission electron microscopy of the fatigued specimens indicates that generation of dislocations during cyclic loading and creation of twins due to strain incompatibility between the matrix and the TiB phase are possible reasons for the observed softening. (c) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of crystallographic texture and the change in the grain size during warm rolling (300 deg K) and their effect on the tensile yield strength at 77 and 300 deg K are studied in 99.9% pure Cd. Both longitudinal and transverse specimens are tested. The yield strength obeys the Hall--Petch relation. The Hall--Petch slope, k, is lower and the intercept sigma o is higher in the warm worked material in comparison with the corresponding values for annealed Cd. The differences are attributed to the change in 1013 < and 0001 textures that are developed during warm rolling.26 refs.--AA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following an earlier study (J. Am. Chem Soc. 2007, 129, 4470) describing a very unusual growth kinetics of ZnO nanoparticles, we critically evaluate here the proposed mechanism involving a crucial role of the alkali base ion in controlling the growth of ZnO nanoparticles using other alkali bases, namely, LiOH and KOH. While confirming the earlier conclusion of the growth of ZnO nanoparticles being hindered by an effective passivating layer of cations present in the reaction mixture and thereby generalizing this phenomenon, present experimental data reveal an intriguing nonmonotonic dependence of the passivation efficacy on the ionic size of the alkali base ion. This unexpected behavior is rationalized on the basis of two opposing factors: (a) solvated cationic radii and (b) dissociation constant of the base.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rate of breakage of feed in ball milling is usually represented in the form of a first-order rate equation. The equation was developed by treating a simple batch test mill as a well mixed reactor. Several case of deviation from the rule have been reported in the literature. This is attributed to the fact that accumulated fines interfere with the feed material and breaking events are masked by these fines. In the present paper, a new rate equation is proposed which takes into account the retarding effect of fines during milling. For this purpose the analogy of diffusion of ions through permeable membranes is adopted, with suitable modifications. The validity of the model is cross checked with the data obtained in batch grinding of ?850/+600 ?m size quartz. The proposed equation enables calculation of the rate of breakage of the feed at any instant of time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt has been made to systematically investigate the effects of microstructural parameters, such as the prior austenite grain size (PAGS), in influencing the resistance to fatigue crack growth (FCG) in the near-threshold region under three different temper levels in a quenched and tempered high-strength steel. By austenitizing at various temperatures, the PAGS was varied from about 0.7 to 96 μm. The microstructures with these grain sizes were tempered at 200 °C, 400 °C, and 530 °C and tested for fatigue thresholds and crack closure. It has been found that, in general, three different trends in the dependence of both the total threshold stress intensity range, ΔK th , and the intrinsic threshold stress intensity range, ΔK eff, th , on the PAGS are observable. By considering in detail the factors such as cyclic stress-strain behavior, environmental effects on FCG, and embrittlement during tempering, the present observations could be rationalized. The strong dependence of ΔK th and ΔK eff, th on PAGS in microstructures tempered at 530 °C has been primarily attributed to cyclic softening and thereby the strong interaction of the crack tip deformation field with the grain boundary. On the other hand, a less strong dependence of ΔK th and ΔK eff, th on PAGS is suggested to be caused by the cyclic hardening behavior of lightly tempered microstructures occurring in 200 °C temper. In both microstructures, crack closure influenced near-threshold FCG (NTFCG) to a significant extent, and its magnitude was large at large grain sizes. Microstructures tempered at the intermediate temperatures failed to show a systematic variation of ΔKth and ΔKeff, th with PAGS. The mechanisms of intergranular fracture vary between grain sizes in this temper. A transition from “microstructure-sensitive” to “microstructure-insensitive” crack growth has been found to occur when the zone of cyclic deformation at the crack tip becomes more or less equal to PAGS. Detailed observations on fracture morphology and crack paths corroborate the grain size effects on fatigue thresholds and crack closure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of molecular size on the dynamics of polar solvation are studied by using a microscopic theory which includes the translational relaxation modes of the solvent consistently. It is shown that while in the absence of the translational contribution the solvation rate increases with the size of the solute (in agreement with the conclusions of the nonequilibrium MSA theory),a complete reversal of the solute size dependence occurs when translational modes make a significant contribution to the solvent polarization relaxation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model incorporating the surface conductivity and morphology of the composite solid electrolytes is envisaged to explain their conduction behaviour. The conductivity data on LinX−50 m/o Al2O3 (X = F−, Cl−, Br−, CO32−, SO42−, PO43−) composites prepared by thermal decomposition of LinX·2nAl(OH)3·mH2O salts and Li2SO4−A (A=Al2O3, CeO2, Y2O3, Yb2O3, Zr2O3, ZrO2 and BaTiO3) composites prepared by mechanical mixing of the components are examined in the light of this model. It is surmised that the particle size of both the dispersoids and the hosts not only influence the ionic conductivity of the host matrix but also affect its bulk properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics calculations are reported for Xe in sodium Y zeolite with varying strengths of sorbate-zeolite dispersion interaction. In the absence of any dispersion interaction between the sorbate and the zeolite, the presence of the zeolite has a purely geometrical role. Increase in the strength of the sorbate-zeolite interaction increases the monomer population and decreases the population of dimers and higher sized clusters. The lifetime of the monomers as well as dimers increases with the strength of the dispersion interaction. The observed variations in the lifetime and the population of the different sized clusters is explained in terms of the changes in the potential energy surface caused by the increase in the strength of the dispersion interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently we presented a microscopic expression for dielectric friction on a rotating dipole. This expression has a rather curious structure, involving the contributions of the transverse polarization modes of the solvent and also of the molecular length scale processes. It is shown here that under proper limiting conditions, this expression reduces exactly to the classical continuum model expression of Nee and Zwanzig [J. Chem. Phys. 52, 6353 (1970)]. The derivation requires the use of the asymptotic form of the orientation‐dependent total pair correlation function, the neglect of the contributions of translational modes of the solvent, and also the use of the limit that the size of the solvent molecules goes to zero. Thus, the derivation can be important in understanding the validity of the continuum model and can also help in explaining the results of a recent computer simulation study of dielectric relaxation in a Brownian dipolar lattice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation in the bulk modulus of semiconductor nanoparticles has been studied within first-principles electronic-structure calculations using the local density approximation (LDA) for the exchange correlation. Quantum Monte Carlo calculations carried out for a silicon nanocrystal Si87H76 provided reasonable agreement with the LDA results. An enhancement was observed in the bulk modulus as the size of the nanoparticle was decreased, with modest enhancements being predicted for the largest nanoparticles studied here, a size just accessible in experiments. To access larger sizes, we fit our calculated bulk moduli to the same empirical law for all materials, the asymptote of which is the bulk value of the modulus. This was found to be within 2-10% of the independently calculated value. The origin of the enhancement has been discussed in terms of Cohen's empirical law M.L. Cohen, Phys. Rev. B 32, 7988 (1985)] as well as other possible scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The similar to 2500 km long Himalayan arc has experienced three large to great earthquakes of M-w 7.8 to 8.4 during the past century, but none produced surface rupture. Paleoseismic studies have been conducted during the last decade to begin understanding the timing, size, rupture extent, return period, and mechanics of the faulting associated with the occurrence of large surface rupturing earthquakes along the similar to 2500 km long Himalayan Frontal Thrust (HFT) system of India and Nepal. The previous studies have been limited to about nine sites along the western two-thirds of the HFT extending through northwest India and along the southern border of Nepal. We present here the results of paleoseismic investigations at three additional sites further to the northeast along the HFT within the Indian states of West Bengal and Assam. The three sites reside between the meizoseismal areas of the 1934 Bihar-Nepal and 1950 Assam earthquakes. The two westernmost of the sites, near the village of Chalsa and near the Nameri Tiger Preserve, show that offsets during the last surface rupture event were at minimum of about 14 m and 12 m, respectively. Limits on the ages of surface rupture at Chalsa (site A) and Nameri (site B), though broad, allow the possibility that the two sites record the same great historical rupture reported in Nepal around A.D. 1100. The correlation between the two sites is supported by the observation that the large displacements as recorded at Chalsa and Nameri would most likely be associated with rupture lengths of hundreds of kilometers or more and are on the same order as reported for a surface rupture earthquake reported in Nepal around A.D. 1100. Assuming the offsets observed at Chalsa and Nameri occurred synchronously with reported offsets in Nepal, the rupture length of the event would approach 700 to 800 km. The easternmost site is located within Harmutty Tea Estate (site C) at the edges of the 1950 Assam earthquake meizoseismal area. Here the most recent event offset is relatively much smaller (<2.5 m), and radiocarbon dating shows it to have occurred after A.D. 1100 (after about A.D. 1270). The location of the site near the edge of the meizoseismal region of the 1950 Assam earthquake and the relatively lesser offset allows speculation that the displacement records the 1950 M-w 8.4 Assam earthquake. Scatter in radiocarbon ages on detrital charcoal has not resulted in a firm bracket on the timing of events observed in the trenches. Nonetheless, the observations collected here, when taken together, suggest that the largest of thrust earthquakes along the Himalayan arc have rupture lengths and displacements of similar scale to the largest that have occurred historically along the world's subduction zones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a large decrease in tetragonal to cubic phase transformation temperature when grain size of bulk CuFe2O4 is reduced by mechanical ball milling. The change in phase transformation temperature was inferred from in situ high temperature conductivity and x-ray diffraction measurements. The decrease in conductivity with grain size suggests that ball milling has not induced any oxygen vacancy while the role of cation distribution in the observed decrease in phase transformation temperature is ruled out from in-field Fe-57 Mossbauer and extended x-ray absorption fine structure measurements. The reduction in the phase transformation temperature is attributed to the stability of structures with higher crystal symmetry at lower grain sizes due to negative pressure effect. (C) 2011 American Institute of Physics. doi: 10.1063/1.3493244]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The type of abrasion that the grinding medium experiences inside a ball mill is classified as high stress or grinding abrasion, because the stress levels at the surface of the medium exceed the yield stress of the metal when hard abrasives are crushed. During dry grinding of ores the medium undergoes not only abrasion but also erosion and impact. As all three mechanisms of wear occur simultaneously, it is difficult to follow the individual components of wear. However, it is possible to show that the overall kinetics of wear follows a simple power law of the type w = at(b), where w is the weight loss of the grinding medium for a specified grinding time t and a and b are constants. Experimental data, obtained from dry grinding of quartz for a wide range of times using AISI 52100 steel balls having various microstructures in a laboratory scale batch mill, are fitted to the proposed equation and the wear rate w is calculated from the first derivative of the equation. The mean particle sizes of the quartz charge DBAR corresponding to 50 and 80% retained size are determined by mechanical sieving of the ground product after a grinding time t and thus the relationship between wear rate and particle size of the abrasive is established. It is found that w increases rapidly with DBAR up to some critical size and then increases at a much lower rate.