65 resultados para GENETIC ALGORITHM
Resumo:
This paper discusses an approach for river mapping and flood evaluation based on multi-temporal time-series analysis of satellite images utilizing pixel spectral information for image clustering and region based segmentation for extracting water covered regions. MODIS satellite images are analyzed at two stages: before flood and during flood. Multi-temporal MODIS images are processed in two steps. In the first step, clustering algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used to distinguish the water regions from the non-water based on spectral information. These algorithms are chosen since they are quite efficient in solving multi-modal optimization problems. These classified images are then segmented using spatial features of the water region to extract the river. From the results obtained, we evaluate the performance of the methods and conclude that incorporating region based image segmentation along with clustering algorithms provides accurate and reliable approach for the extraction of water covered region.
Resumo:
In this article, we study the thermal performance of phase-change material (PCM)-based heat sinks under cyclic heat load and subjected to melt convection. Plate fin type heat sinks made of aluminum and filled with PCM are considered in this study. The heat sink is heated from the bottom. For a prescribed value of heat flux, design of such a heat sink can be optimized with respect to its geometry, with the objective of minimizing the temperature rise during heating and ensuring complete solidification of PCM at the end of the cooling period for a given cycle. For given length and base plate thickness of a heat sink, a genetic algorithm (GA)-based optimization is carried out with respect to geometrical variables such as fin thickness, fin height, and the number of fins. The thermal performance of the heat sink for a given set of parameters is evaluated using an enthalpy-based heat transfer model, which provides the necessary data for the optimization algorithm. The effect of melt convection is studied by taking two cases, one without melt convection (conduction regime) and the other with convection. The results show that melt convection alters the results of geometrical optimization.
Resumo:
Advertising is ubiquitous in the online community and more so in the ever-growing and popular online video delivery websites (e. g., YouTube). Video advertising is becoming increasingly popular on these websites. In addition to the existing pre-roll/post-roll advertising and contextual advertising, this paper proposes an in-stream video advertising strategy-Computational Affective Video-in-Video Advertising (CAVVA). Humans being emotional creatures are driven by emotions as well as rational thought. We believe that emotions play a major role in influencing the buying behavior of users and hence propose a video advertising strategy which takes into account the emotional impact of the videos as well as advertisements. Given a video and a set of advertisements, we identify candidate advertisement insertion points (step 1) and also identify the suitable advertisements (step 2) according to theories from marketing and consumer psychology. We formulate this two part problem as a single optimization function in a non-linear 0-1 integer programming framework and provide a genetic algorithm based solution. We evaluate CAVVA using a subjective user-study and eye-tracking experiment. Through these experiments, we demonstrate that CAVVA achieves a good balance between the following seemingly conflicting goals of (a) minimizing the user disturbance because of advertisement insertion while (b) enhancing the user engagement with the advertising content. We compare our method with existing advertising strategies and show that CAVVA can enhance the user's experience and also help increase the monetization potential of the advertising content.
Resumo:
Experimental quantum simulation of a Hamiltonian H requires unitary operator decomposition (UOD) of its evolution unitary U = exp(-iHt) in terms of native unitary operators of the experimental system. Here, using a genetic algorithm, we numerically evaluate the most generic UOD (valid over a continuous range of Hamiltonian parameters) of the unitary operator U, termed fidelity-profile optimization. The optimization is obtained by systematically evaluating the functional dependence of experimental unitary operators (such as single-qubit rotations and time-evolution unitaries of the system interactions) to the Hamiltonian (H) parameters. Using this technique, we have solved the experimental unitary decomposition of a controlled-phase gate (for any phase value), the evolution unitary of the Heisenberg XY interaction, and simulation of the Dzyaloshinskii-Moriya (DM) interaction in the presence of the Heisenberg XY interaction. Using these decompositions, we studied the entanglement dynamics of a Bell state in the DM interaction and experimentally verified the entanglement preservation procedure of Hou et al. Ann. Phys. (N.Y.) 327, 292 (2012)] in a nuclear magnetic resonance quantum information processor.
Resumo:
The inversion of canopy reflectance models is widely used for the retrieval of vegetation properties from remote sensing. This study evaluates the retrieval of soybean biophysical variables of leaf area index, leaf chlorophyll content, canopy chlorophyll content, and equivalent leaf water thickness from proximal reflectance data integrated broadbands corresponding to moderate resolution imaging spectroradiometer, thematic mapper, and linear imaging self scanning sensors through inversion of the canopy radiative transfer model, PROSAIL. Three different inversion approaches namely the look-up table, genetic algorithm, and artificial neural network were used and performances were evaluated. Application of the genetic algorithm for crop parameter retrieval is a new attempt among the variety of optimization problems in remote sensing which have been successfully demonstrated in the present study. Its performance was as good as that of the look-up table approach and the artificial neural network was a poor performer. The general order of estimation accuracy for para-meters irrespective of inversion approaches was leaf area index > canopy chlorophyll content > leaf chlorophyll content > equivalent leaf water thickness. Performance of inversion was comparable for broadband reflectances of all three sensors in the optical region with insignificant differences in estimation accuracy among them.