104 resultados para Arthritis, Reactive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Present day power systems are growing in size and complexity of operation with inter connections to neighboring systems, introduction of large generating units, EHV 400/765 kV AC transmission systems, HVDC systems and more sophisticated control devices such as FACTS. For planning and operational studies, it requires suitable modeling of all components in the power system, as the number of HVDC systems and FACTS devices of different type are incorporated in the system. This paper presents reactive power optimization with three objectives to minimize the sum of the squares of the voltage deviations (ve) of the load buses, minimization of sum of squares of voltage stability L-indices of load buses (¿L2), and also the system real power loss (Ploss) minimization. The proposed methods have been tested on typical sample system. Results for Indian 96-bus equivalent system including HVDC terminal and UPFC under normal and contingency conditions are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tungsten incorporated diamond like carbon (W-DLC) nanocomposite thin films with variable fractions of tungsten were deposited by using reactive biased target ion beam deposition technique. The influence of tungsten incorporation on the microstructure, surface topography, mechanical and tribological properties of the DLC were studied using X-ray photoelectron spectroscopy (XPS), Raman spectroscopy. Atomic force microscope (AFM), transmission electron microscopy (TEM), nano-indentation and nano-scratch tests. The amount of W in films gets increases with increasing target bias voltage and most of the incorporated W reacts with carbon to form WC nanoclusters. Using TEM and FFT pattern, it was found that spherical shaped WC nanoclusters were uniformly dispersed in the DLC matrix and attains hexagonal (W2C) crystalline structure at higher W concentration. On the other hand, the incorporation of tungsten led to increase the formation of C-sp(2) hybridized bonding in DLC network and which is reflected in the hardness and elastic modulus of W-DLC films. Moreover, W-DLC films show very low friction coefficient and increased adhesion to the substrate than the DLC film, which could be closely related to its unique nanostructure of the W incorporated thin films. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alumina (Al2O3) thin films were sputter deposited over well-cleaned glass and Si < 100 > substrates by DC reactive magnetron sputtering under various oxygen gas pressures and sputtering powers. The composition of the films was analyzed by X-ray photoelectron spectroscopy and an optimal O/Al atomic ratio of 1.59 was obtained at a reactive gas pressure of 0.03 Pa and sputtering power of 70 W. X-ray diffraction results revealed that the films were amorphous until 550 degrees C. The surface morphology of the films was studied using scanning electron microscopy and the as-deposited films were found to be smooth. The topography of the as-deposited and annealed films was analyzed by atomic force microscopy and a progressive increase in the rms roughness of the films from 3.2 nm to 4.53 nm was also observed with increase in the annealing temperature. Al-Al2O3-Al thin film capacitors were then fabricated on glass substrates to study the effect of temperature and frequency on the dielectric property of the films. Temperature coefficient of capacitance. AC conductivity and activation energy were determined and the results are discussed. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented is a new method for making composition graded metal-ceramic composites using reactive inter-diffusion between a metal and a complex ceramic. Composition variation in both metal and ceramic phases with distance along the direction of diffusion is achieved. The design criteria for developing such composites are discussed. The system should exhibit extensive solid solubility in both metallic and ceramic phases, a defined gradation in the stabilities of the oxides, and mobility of electrons or holes in the oxide solid solution. The complex ceramic used for making the composite should be polycrystalline with sufficient porosity to accommodate the volume expansion caused by alloy precipitation. An inert atmosphere to prevent oxidation and high processing temperature to facilitate diffusive transport are required. The process is illustrated using the reaction couples Fe-NiTiO3, Fe-(Mg,Co)TiO3 and Fe-(Ni,Co)TiO3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transport of reactive solutes through fractured porous formations has been analyzed. The transport through the porous block is represented by a general multiprocess nonequilibrium equation (MPNE), which, for the fracture, is represented by an advection-dispersion equation with linear equilibrium sorption and first-order transformation. An implicit finite-difference technique has been used to solve the two coupled equations. The transport characteristics have been analyzed in terms of zeroth, first, and second temporal moments of the solute in the fracture. The solute behavior for fractured impermeable and fractured permeable formations are first compared and the effects of various fracture and matrix transport parameters are analyzed. Subsequently, the transport through a fractured permeable formation is analyzed to ascertain the effect of equilibrium sorption, rate-limited sorption, and the multiprocess nonequilibrium transport process. It was found that the temporal moments were nearly identical for the fractured impermeable and permeable formations when both the diffusion coefficient and the first-order transformation coefficient were relatively large. The multiprocess nonequilibrium model resulted in a smaller mass recovery in the fracture and higher dispersion than the equilibrium and rate-limited sorption models. DOI: 10.1061/(ASCE)HE.19435584.0000586. (C) 2012 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterogeneity in tumors has led to the development of combination therapies that enable enhanced cell death. Previously explored combination therapies mostly involved the use of bioactive molecules. In this work, we explored a non-conventional strategy of using carbon nanostructures (CNs) single walled carbon nanotube (SWNT) and graphene oxide (GO)] for potentiating the efficacy of a bioactive molecule paclitaxel (Tx)] for the treatment of lung cancer. The results demonstrated enhanced cell death following combination treatment of SWNT/GO and Tx indicating a synergistic effect. In addition, synergism was abrogated in the presence of an anti-oxidant, N-acetyl cysteine (NAC), and was therefore shown to be reactive oxygen species (ROS) dependent. It was further demonstrated using bromodeoxyuridine (BrdU) incorporation assay that treatment with CNs was associated with enhanced mitogen associated protein kinase (MAPK) activation that was ROS mediated. Hence, these results for the first time demonstrated the potential of SWNT/GO as co-therapeutic agents with Tx for the treatment of lung cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wind power, as an alternative to fossil fuels, is plentiful, renewable, widely distributed, clean, produces no greenhouse gas emissions during operation, and uses little land. In operation, the overall cost per unit of energy produced is similar to the cost for new coal and natural gas installations. However, the stochastic behaviour of wind speeds leads to significant disharmony between wind energy production and electricity demand. Wind generation suffers from an intermittent characteristics due to the own diurnal and seasonal patterns of the wind behaviour. Both reactive power and voltage control are important under varying operating conditions of wind farm. To optimize reactive power flow and to keep voltages in limit, an optimization method is proposed in this paper. The objective proposed is minimization of the voltage deviations of the load buses (Vdesired). The approach considers the reactive power limits of wind generators and co-ordinates the transformer taps. This algorithm has been tested under practically varying conditions simulated on a test system. The results are obtained on a system of 50-bus real life equivalent power network. The result shows the efficiency of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stoichiometric and non-stoichiometric powder mixtures of Ti-B4C and Ti-C with 1 wt% Ni were reactively hot pressed at 40 MPa, 1200 degrees C for 30 min. In both systems, the combined presence of Ni and non-stoichiometry enabled complete densification. While in Ti-C, non-stoichiometry by itself plays a significant role in promoting densification, the formation of intermediate borides in Ti-B4C powder mixtures requires the additional presence of Ni which promotes full reaction through the formation of a transient liquid as established previously in Ti-BN powder mixtures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite considerable research to develop carbon based materials for biomedical applications, the toxicity of carbon remains a major concern. In order to address this issue as well as to investigate the cell fate processes of neural cells from the perspective of neural tissue engineering applications, the in vitro cytocompatibility of polyacrylonitrile (PAN) derived continuous carbon nanofibers and PAN derived carbon thin films were investigated both quantitatively and qualitatively using in vitro biochemical assays followed by extensive flow cytometry analysis. The experimental results of Schwann cell fate, i.e. cell proliferation, cell metabolic activity and cell apoptosis on amorphous carbon substrates are discussed in reference to the time dependent evolution of intracellular oxidative stress. Apart from providing evidence that an electrospun carbon nanofibrous substrate can physically guide the cultured Schwann cells, this study suggested that continuous carbon nanofibers and amorphous carbon films are not cytotoxic in vitro and do not significantly induce apoptosis of Schwann cells, but in fact even facilitate their proliferation and growth.