134 resultados para Zucchini yellow mosaic virus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As tumors grow larger, they often experience an insufficient supply of oxygen and nutrients. Hence, cancer cells must develop mechanisms to overcome these stresses. Using an in vitro transformation model where the presence of the simian virus 40 (SV40) small T (ST) antigen has been shown to be critical for tumorigenic transformation, we investigated whether the ST antigen has a role to play in regulating the energy homeostasis of cancer cells. We find that cells expressing the SV40 ST antigen (+ST cells) are more resistant to glucose deprivation-induced cell death than cells lacking the SV40 ST antigen (-ST cells). Mechanistically, we find that the ST antigen mediates this effect by activating a nutrient-sensing kinase, AMP-activated protein kinase (AMPK). The basal level of active, phosphorylated AMPK was higher in +ST cells than in -ST cells, and these levels increased further in response to glucose deprivation. Additionally, inhibition of AMPK in +ST cells increased the rate of cell death, while activation of AMPK in -ST cells decreased the rate of cell death, under conditions of glucose deprivation. We further show that AMPK mediates its effects, at least in part, by inhibiting mTOR (mammalian target of rapamycin), thereby shutting down protein translation. Finally, we show that +ST cells exhibit a higher percentage of autophagy than -ST cells upon glucose deprivation. Thus, we demonstrate a novel role for the SV40 ST antigen in cancers, where it functions to maintain energy homeostasis during glucose deprivation by activating AMPK, inhibiting mTOR, and inducing autophagy as an alternate energy source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cupric complex of isonicotinic acid hydrazide inhibits DNA synthesis by avian myloblastosis virus reverse transcriptase. This inhibition occurs in the presence of either ribonucleotide or deoxyribonucleotide templates. The inhibition of reverse transcriptase by cupric-INH complex is considerably reduced when stored or proteolytically cleaved enzyme was used in the reaction. The complex also inhibits the reverse transciptase-associated RNase H activity. The cupric-isonicotinic acid hydrazide complex cleaves pBR 322 from I DNA into smaller molecules in the presence or absence of reverse transcriptase-associated endonuclease. However, in the presence of the enzyme the DNA is cleaved to a greater extent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isonicotinic acid hydrazide (isoniazid), one of the most potent antitubercular drugs, was recently shown, in our laboratory, to form two different complexes with copper, depending upon the oxidation state of the metal ion. Both the complexes have been shown to possess antiviral activity against Rous sarcoma virus, an RNA tumor virus. The antiviral activity of the complexes has been attributed to their ability to inhibit the endogenous reverse transcriptase activity of RSV. More recent studies in our laboratory indicate that both these complexes inhibit both endogenous and exogenous reactions. As low a final concentration as 50 μM of the cupric and the cuprous complexes inhibits the endogenous reaction to the extent of 93 and 75 per cent respectively. Inhibition of the exogenous reaction varies with the templates. The inhibition can be reversed by either β-mercaptoethanol or ethylene-diamine-tetra-acetic acid. The specificity of this inhibition has been ascertained by using a synthetic primer-template, −(dG)not, vert, similar15−(rCm)n, which is highly specific for reverse transcriptases. The inhibition is found to be template specific. The studies carried out, using various synthetic primer-templates, show the inhibition of both the steps of reverse transcription by the copper complexes of isoniazid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 3prime terminal 1255nt sequence of Physalis mottle virus (PhMV) genomic RNA has been determined from a set of overlapping cDNA clones. The open reading frame (ORF) at the 3prime terminus corresponds to the amino acid sequence of the coat protein (CP) determined earlier except for the absence of the dipeptide, Lys-Leu, at position 110-111. In addition, the sequence upstream of the CP gene contains the message coding for 178 amino acid residues of the C-terminus of the putative replicase protein (RP). The sequence downstream of the CP gene contains an untranslated region whose terminal 80 nucleotides can be folded into a characteristic tRNA-like structure. A phylogenetic tree constructed after aligning separately the sequence of the CP, the replicase protein (RP) and the tRNA-like structure determined in this study with the corresponding sequences of other tymoviruses shows that PhMV wrongly named belladonna mottle virus [BDMV(I)] is a separate tymovirus and not another strain of BDMV(E) as originally envisaged. The phylogenetic tree in all the three cases is identical showing that any subset of genomic sequence of sufficient length can be used for establishing evolutionary relationships among tymoviruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coat protein gene of physalis mottle tymovirus (PhMV) was over expressed in Escherichia coli using pET-3d vector. The recombinant protein was found to self assemble into capsids in vivo. The purified recombinant capsids had an apparent s value of 56.5 S and a diameter of 29(±2) nm. In order to establish the role of amino and carboxy-terminal regions in capsid assembly, two amino-terminal deletions clones lacking the first 11 and 26 amino acid residues and two carboxy-terminal deletions lacking the last five and ten amino acid residues were constructed and overexpressed. The proteins lacking N-terminal 11 (PhCPN1) and 26 (PhCPN2) amino acid residues self assembled into T = 3 capsids in vivo, as evident from electron microscopy, ultracentrifugation and agarose gel electrophoresis. The recombinant, PhCPN1 and PhCPN2 capsids were as stable as the empty capsids formed in vivo and encapsidated a small amount of mRNA. The monoclonal antibody PA3B2, which recognizes the epitope within region 22 to 36, failed to react with PhCPN2 capsids while it recognized the recombinant and PhCPN1 capsids. Disassembly of the capsids upon treatment with urea showed that PhCPN2 capsids were most stable. These results demonstrate that the N-terminal 26 amino acid residues are not essential for T = 3 capsid assembly in PhMV. In contrast, both the proteins lacking the C-terminal five and ten amino acid residues were present only in the insoluble fraction and could not assemble into capsids, suggesting that these residues are crucial for folding and assembly of the particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

5-Fluorouracil (5FU), an analogue of uracil, was found to inhibit the production of infectious particles of rinderpest virus (RPV) in Vero cells (African green monkey kidney cells) by 99%, at a concentration of 1 μg/ml. The levels of individual mRNA specific for five of the virus genes were also reduced drastically, while the level of mRNA for a cellular housekeeping gene—glyceraldehyde-3-phosphate dehydrogenase (GAPDH)—was unaltered by fluorouracil treatment of infected cells. Both virus RNA and protein synthesis showed inhibition in a dose-dependent manner. The virions which budded out of 5-fluorouracil-treated cells also contained reduced amounts of virus proteins compared with virus particles from untreated cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyhedral bodies of Bombyx mori nuclear polyhedrosis virus, BmNPV (BGL) isolated from infected silkworms around Bangalore were propagated either in the cultured B. mori cell line, BmN or through infection of larvae. Electron microscopic (EM) observations of the polyhedra revealed an average length of 2 mu m and a height of 0.5 mu m. The purified polyhedra derived virions (PDV) showed several bands in sucrose gradient centrifugation, indicating the multiple nucleocapsid nature of BmNPV. Electron microscopic studies of PDV revealed a cylindrical, rod-shaped nucleocapsid with an average length of 300 nm and a diameter of 35 nm. The genomic DNA from the PDV was characterized by extensive restriction analysis and the genome size was estimated to be 132 kb. The restriction pattern of BmNPV (BGL) resembled that of the prototype strain BmNPV-T3. Distinct differences due to polymorphic sites for restriction enzyme HindIII were apparent between BmNPV (BGL) and the virus isolated from a different part of Karnataka (Dharwad area), BmNPV (DHR).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have generated a recombinantBombyx morinuclear polyhedrosis virus, vBmhGH, harboring the full-length human growth hormone gene (2.4-kb genomic DNA, with four introns and the signal peptide sequences) under the control of the polyhedrin promoter. BmN cells in culture infected with the recombinant virus showed the presence of RNA corresponding to the authentic growth hormone mRNA as well as its incompletly processed precusor. Electrophoretic analysis and immunoprecipitation of proteins of recombinant virus-infected BmN cells revealed the presence of the growth hormone protein. Infection of silkworm larvae with vBmhGH led to the synthesis and efficient secretion of the protein into hemolymph. The recombinant human growth hormone was biologically active in a radioreceptor competition binding assay. The secreted protein was isolated and purified to homogeneity by a single step immunoaffinity chromatography, to a specific activity of 2.4 × 104U/mg. The recombinant hGH retained the immunological and biolological properties of the native peptide. We conclude that BmNPV vectors can be used successfully for expressing chromosomal genes harboring multiple introns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purified rinderpest virus was earlier shown to transcribe in vitro, all virus-specific mRNAs with the promoter-proximal N mRNA being the most abundant. Presently, this transcription system has been shown to synthesize full length monocistronic mRNAs comparable to those made in infected cells. Small quantities of bi- and tricistronic mRNAs are also synthesized. Rinderpest virus synthesizes in vitro, a leader RNA of not, vert, similar 55 nucleotides in length. Purified rinderpest virus also exhibits RNA editing activity during the synthesis of P mRNA as shown by primer extension analysis of the mRNA products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously reported that Lyt(2+) cytotoxic T lymphocytes (CTL) can be raised against Japanese encephalitis virus (JEV) in BALB/c mice. In order to confirm the presence of H-2K(d)-restricted CTL and to examine their cross-recognition of West Wile virus (WNV), we tested the capacity of anti-JEV CTL to lyse uninfected syngeneic target cells that were pulsed with synthetic peptides. The sequence of the synthetic peptides was predicted based upon the H-2K(d) binding consensus motif. We show here that preincubation of uninfected syngeneic targets (P388D1) with JEV NS1- and NS3-derived peptides [NS1 (891-899) and NS3 (1804-1812)], but not with JEV NS5-derived peptide [NS5 (3370-3378)], partially sensitized them for lysis by polyclonal anti-JEV CTL. These results indicate the CTL recognition of NS1- and NS3-derived peptides of JEV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rinderpest virus (RPV) large (L) protein is an integral part of the ribonucleoprotein (RNP) complex of the virus that is responsible for transcription and replication of the genome. Previously, we have shown that recombinant L protein coexpressed along with P protein (as the L-P complex) catalyses the synthesis of all viral mRNAs in vitro and the abundance of mRNAs follows a gradient of polarity, similar to the occurrence in vivo. In the present work, we demonstrate that the viral mRNAs synthesized in vitro by the recombinant L or purified RNP are capped and methylated at the N-7 guanine position. RNP from the purified virions, as well as recombinant L protein, shows RNA triphosphatase (RTPase) and guanylyl transferase (GT) activities. L protein present in the RNP complex catalyses the removal of gamma-phosphate from triphosphate-ended 25 nt RNA generated in vitro representing the viral N-terminal mRNA 5' sequence. The L protein forms a covalent enzyme-guanylate intermediate with the GMP moiety of GTP, whose formation is inhibited by the addition of pyrophosphate; thus, it exhibits characteristics of cellular GTs. The covalent bond between the enzyme and nucleotide is acid labile and alkali stable, indicating the presence of phosphoamide linkage. The C-terminal region (aa 1717-2183) of RPV L protein alone exhibits the first step of GT activity needed to form a covalent complex with GMP, though it lacks the ability to transfer GMP to substrate RNA. Here, we describe the biochemical characterization of the newly found RTPase/GT activity of L protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existing vaccines against influenza are based on the generation of neutralizing antibody primarily directed against surface proteins-hernagglutinin and neuraminidase. In this work, we have computationally defined conserved T cell epitopes of proteins of influenza virus H5N1 to help in the design of a vaccine with haplotype specificity for a target population. The peptides from the proteome of H5NI irus which are predicted to bind to different HLAs, do not show similarity with peptides of human proteorne and are also identified to be generated by proteolytic cleavage. These peptides could be made use of in the design of either a DNA vaccine or a subunit vaccine against V influenza. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the presence of nonstructural protein 1 (NS1)-specific antibodies in a significant proportion of convalescent-phase human serum samples obtained from a cohort in an area where Japanese encephalitis virus (JEV) is endemic. Sera containing antibodies to NS1 but not those with antibodies to other JEV proteins, such as envelope, brought about complement-mediated lysis of JEV-infected BHK-21 cells. Target cells infected with a recombinant poxvirus expressing JEV NS1 on the cell surface confirmed the NS1 specificity of cytolytic antibodies. Mouse anti-NS1 cytolytic sera caused a complement-dependent reduction in virus output from infected human cells, demonstrating their important role in viral control. Antibodies elicited by JEV NS1 did not cross lyse West Nile virus- or dengue virus-infected cells despite immunoprecipitating the NS1 proteins of these related flaviviruses. Additionally, JEV NS1 failed to bind complement factor H, in contrast to NS1 of West Nile virus, suggesting that the NS1 proteins of different flaviviruses have distinctly different mechanisms for interacting with the host. Our results also point to an important role for JEV NS1-specific human immune responses in protection against JE and provide a strong case for inclusion of the NS1 protein in next generation of JEV vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphoprotein P of paramyxoviruses is known to play more than one role in genome transcription and replication. Phosphorylation of P at the NH2 terminus by cellular casein kinase II has been shown to be necessary for transcription of the genome in some of the viruses, while it is dispensable for replication. The phosphorylation null mutant of rinderpest virus P protein, in which three serine residues have been mutated, has been shown earlier to be non-functional in an in vivo minigenome replication/transcription system. In this work, we have shown that the phosphorylation of P protein is essential for transcription, whereas the null mutant is active in replication of the genome in vivo. The null mutant P acts as a transdominant repressor of transcriptional activity of wild-type P and as an activator of replication carried out by wild-type P protein. These results suggest the phosphorylation status of P may act as a replication switch during virus replication. We also show that the phosphorylation null mutant P is capable of interacting with L and N proteins and is able to form a tripartite complex of L-(N-P) when expressed in insect cells, similar to wild-type P protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly sensitive and specific reverse transcription polymerase chain reaction enzyme linked immunosorbent assay (RT-PCR-ELISA) was developed for the objective detection of nucleoprotein (N) gene of peste des petits ruminants (PPR) virus from field outbreaks or experimentally infected sheep. Two primers (IndF and Np4) and one probe (Sp3) available or designed for the amplification/probing of the 'N' gene of PPR virus, were chosen for labeling and use in RT-PCR-ELISA based on highest analytical sensitivity of detection of infective virus or N-gene containing recombinant plasmid, higher nucleotide homology at the primer binding sites of the 'N' gene sequences available and the ability to amplify PPR viral genome from different sources of samples. RT-PCR was performed with unlabeled IndF and Np4 digoxigenin labeled primers followed by a microplate hybridization probe reaction with biotin labeled Sp3 probe. RT-PCR-ELISA was found to be 10-fold more sensitive than the conventional RT-PCR followed by agarose gel based detection of PCR product. Based on the Mean (mean +/- 3S.D.) optical density (OD) values of 47 RT-PCR negative samples, OD values above 0.306 were considered positive in RT-PCR-ELISA. A total of 82 oculo-nasal swabs and tissue samples from suspected PPR cases were analyzed by RT-PCR and RT-PCR-ELISA, which revealed 54.87 and 58.54% positivity, respectively. From an experimentally infected sheep, both RT-PCR and RT-PCR-ELISA could detect the virus from 6 days post-infection up to 9 days in oculo-nasal swabs. On post-mortem, PPR viral genome was detected in spleen, lymph node, lung, heart and liver. The correlation co-efficient between RT-PCR-ELISA OD values and either TCID50 of virus or molecules of DNA was 0.622 and 0.657, respectively. The advantages of RT-PCR-ELISA over the conventional agarose gel based detection of RT-PCR products are discussed. (c) 2006 Elsevier B.V. All rights reserved.