40 resultados para Superoxide-dismutase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vanadate-dependent oxidation of NADH by xanthine oxidase does not require the presence of xanthine and therefore is not due to cooxidation. Addition of NADH or xanthine had no effect on the oxidation of the other substrate. Oxidation of NADH was high at acid pH and oxidation of xanthine was high at alkaline pH. The specific activity was relatively very high with NADH. Concentration-dependent oxidation of NADH was obtained in the presence of the polymeric form of vanadate, but not orthovanadate or metavanadate. Both NADH and NADPH were oxidized, as in the nonenzymatic system. Oxidation of NADH, but not xanthine, was inhibited by KCN, ascorbate, MnCl2, cytochrome c, mannitol, Tris, epinephrine, norepinephrine, and triiodothyronine. Oxidation of NADH was accompanied by uptake of oxygen and generation of H2O2 with a stoichiometry of 1:1:1 for NADH:O2:H2O2. A 240-nm-absorbing species was formed during the reaction which was different from H2O2 or superoxide. A mechanism of NADH oxidation is suggested wherein VV and O2 receive one electron each successively from NADH followed by VIV giving the second electron to superoxide and reducing it to H2O2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mono-oxygenase catalysing the conversion of 2-ethyl-4-thioisonicotinamide (ethionamide) into its sulphoxide was purified from guinea-pig liver homogenates. The enzyme required stoicheiometric amounts of oxygen and NADPH for the sulphoxidation reaction. The purified protein is homogeneous by electrophoretic, antigenic and chromatographic criteria. The enzyme has mol.wt. 85000 and it contains 1g-atom of iron and 1mol of FAD per mol, but not cytochrome P-450. The enzyme shows maximal activity at pH7.4 in a number of different buffer systems and the Km values calculated for the substrate and NADPH are 6.5×10-5m and 2.8×10-5m respectively. The activation energy of the reaction was calculated to be 36kJ/mol. Under optimal conditions, the molecular activity of the enzyme (mol of substrate oxidized/min per mol of enzyme) is calculated to be 2.1. The oxygenase belongs to the class of general drug-metabolizing enzymes and it may act on different compounds which can undergo sulphoxidation. The mechanism of sulphoxidation was shown to be mediated by superoxide anions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemical reduction of oxygen has been studied on gold, boron-doped diamond (BDD) and glassy carbon (GC) electrodes in a ternary eutectic mixture of acetamide (CH3CONH2), urea (NH2CONH2) and ammonium nitrate (NH4NO3). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), chronoamperometry and rotating disk electrode (RDE) voltammetry techniques have been employed to follow oxygen reduction reaction (ORR). The mechanism for the electrochemical reduction of oxygen on polycrystalline gold involves 2-step. 2-electron pathways of O-2 to H2O2 and further reduction of H2O2 to H2O. The first 2-electron reduction of O-2 to H2O2 passes through superoxide intermediate by 1-electron reduction of oxygen. Kinetic results suggest that the initial 1-electron reduction of oxygen to HO2 is the rate-determining step of ORR on gold surfaces. The chronoamperometric and ROE studies show a potential dependent change in the number of electrons on gold electrode. The oxygen reduction reaction on boron-doped diamond (BOO) seems to proceed via a direct 4-electron process. The reduction of oxygen on the glassy carbon (GC) electrode is a single step, irreversible, diffusion limited 2-electron reduction process to peroxide. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The activation of functional responses in rabbit peritoneal neutrophils by gramicidin and the chemotactic peptide, N-formyl-methionyl-leucyl-phenylalanine methyl ester, was studied. Gramicidin activated superoxide generation, lysosomal enzyme release and a decrease in fluorescence of chlortetracycline-loaded cells, as for the chemotactic peptide. The maximum intensities of the responses by gramicidin were lower than that by chemotactic peptide. Responses by both these peptides could be inhibited by t-butyloxycarbonyl-methionyl-leucyl-phenylalanine, a chemotactic peptide receptor antagonist. Gramicidin gave responses at low doses comparable to that of the chemotactic peptide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxidation of NADH and accompanying reduction of oxygen to H2O2 stimulated by polyvanadate was markedly inhibited by SOD and cytochrome c. The presence of decavanadate, the polymeric form, is necessary for obtaining the microsomal enzyme-catalyzed activity. The accompanying activity of reduction of cytochrome c was found to be SOD-insensitive and therefore does not represent superoxide formation. The reduction of cytochrome c by vanadyl sulfate was also SOD-insensitive. In the presence of H2O2 all the forms of vanadate were able to oxidize reduced cytochrome c, which was sensitive to mannitol, tris and also catalase, indicating H202-dependent generation of hydroxyl radicals. Using ESR and spin trapping technique only hydroxyl radicals, but not superoxide anion radicals, were detected during polyvanadate-dependent NADH oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytochrome c, a "mobile electron carrier" of the mitochondrial respiratory chain, also occurs in detectable amounts in the cytosol, and can receive electrons from cytochromes present in endoplasmic reticulum and plasma membranes as well as from superoxide and ascorbate. The pigment was found to dissociate from mitochondrial membranes in liver and kidney when rats were subjected to heat exposure and starvation, respectively. Treating cytochrome c with hydroxylamine gives a partially deaminated product with altered redox properties; decreased stimulation of respiration by deficient mitochondria, increased reduction by superoxide, and complete loss of reducibility by plasma membranes. Mitochondria isolated from brown adipose tissue of cold-exposed rats are found to be sub-saturated with cytochrome c. The ability of cytochrome c to reactivate reduced ribonuclease is now reinterpreted as a molecular chaperone role for the hemoprotein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ferrocenyl conjugates 2-ferrocenylimidazophenanthroline (1) and 2-ferrocenylimidazophenanthrene (2) were prepared, characterized, and their photoinduced DNA cleavage and photocytotoxic activity were studied. 2-Phenylimidazophenanthroline (3) was used as a control species. Compound 2 was characterized by X-ray crystallography. The interaction of the compounds with double-stranded calf thymus DNA (CT DNA) was studied. The compounds show good binding affinity to CT DNA with K-b values of approximately 10(5) M-1. Thermal denaturation data suggest the groove binding nature of the compounds. The redox-active compounds show poor chemical nuclease activity in the presence of hydrogen peroxide and glutathione (GSH). Compound 1 exhibits significant DNA photocleavage activity in visible light of 476 and 532 nm. Compound 3 shows only moderate DNA cleavage activity. The positive effect of the ferrocenyl moiety is demonstrated by the DNA photocleavage data. Mechanistic investigations reveal the formation of superoxide as well as hydroxyl radicals as the active species. The photocytotoxicity of the compounds in HeLa cells was studied upon irradiation with visible light (400-700 nm). Compound 1 shows efficient photocytotoxic activity with an IC50 value of 13 mu M, while compounds 2 and 3 are less active with IC50 values of > 50 and 22 mu M, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iron(II) complexes Fe(L)(2)](2+) as perchlorate (1-3) and chloride (1a-3a) salts, where L is 4'-phenyl-2,2':6',2 `'-terpyridine (phtpy in 1, 1a), 4'-(9-anthracenyl)-2,2':6',2 `'-terpyridine (antpy in 2, 2a) and 4'-(1-pyrenyl)-2,2':6',2 `'-terpyridine (pytpy in 3, 3a), were prepared and their photocytotoxicity studied. The diamagnetic complexes 1-3 having an FeN6 core showed an Fe(III)-Fe(II) redox couple near 1.0 V vs. saturated calomel electrode in MeCN-0.1 M tetrabutylammonium perchlorate. Complexes 2 and 3, in addition, displayed a quasi-reversible ligand-based redox process near 0.0 V. The redox and spectral properties are rationalized from the theoretical studies. The complexes bind to DNA in a partial intercalative mode. The pytpy complex efficiently photo-cleaves DNA in green light via superoxide and hydroxyl radical formation. The antpy and pytpy complexes exhibited a remarkable photocytotoxic effect in HeLa cancer cells (IC50, similar to 9 mu M) in visible light (400-700 nm), while remaining essentially nontoxic in dark (IC50, similar to 90 mu M). Formation of reactive oxygen species (ROS) inside the HeLa cells was evidenced from the fluorescence enhancement of dichlorofluorescein upon treatment with the pytpy complex followed by photo-exposure. The antpy and pytpy complexes were used for cellular imaging. Confocal imaging and dual staining study using propidium iodide (PI) showed nuclear localization of the complexes. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel BioBr/Cd(OH)(2) heterostructures were synthesized by a facile chemical bath method under ambient conditions. A series of BiOBr/Cd(OH)(2) heterostructures were obtained by tuning the Bi/Cd molar ratios. The obtained heterostructures were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). Optical properties were studied by UV-visible spectroscopy, diffuse reflectance spectroscopy and photoluminescence (PL). Photocatalytic studies on rhodamine B (RhB) under visible light irradiation showed that the heterostructures are very efficient photocatalysts in mild basic medium. Scavenger test studies confirmed that the photogenerated holes and superoxide radicals (O-2(center dot-)) are the main active species responsible for RhB degradation. Comparison of photoluminescence (PL) intensity suggested that an inhibited charge recombination is crucial for the degradation process over these photocatalysts. Moreover, relative positioning of the valence and conduction band edges of the semiconductors, O-2/O-2(center dot-) and (OH)-O-center dot/H2O redox potentials and HOMO-LUMO levels of RhB appear to be responsible for the hole-specificity of degradation. Photocatalytic recycling experiments indicated the high stability of the catalysts in the reaction medium without any significant loss of activity. This study hence concludes that the heterojunction constructed between Cd(OH)(2) and BiOBr interfaces play a crucial role in influencing the charge carrier dynamics and subsequent photocatalytic activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Co3O4 catalysts were prepared by combustion synthesis using different fuels glycine (G), ODH (O) and urea (U). Morphological changes of the materials were observed by using different fuels. The prepared catalysts were characterized by XRD, XPS, SEM, TEM, BET and DRIFTS analysis. All compounds showed 100% conversion of CO below 175C. The prepared catalysts exhibited very high stability and conversions did not decrease even after 50 h of continuous operation. The oxygen storage capacity (OSC) of materials was measured by H-2-TPR analysis. Co3O4-O is having high OSC among the synthesized catalysts. The activation energies of these catalysts were found to be in the range of 42.3-64.8 kJ mol(-1). With DRIFTS analysis, the surface carbonates, superoxide anions, adsorbed CO, O-2 species on the catalyst surface were found and this information was used to develop a detailed reaction pathway. A kinetic model was developed with the help of proposed mechanism and used to fit the data. (C) 2014 Elsevier B.V. All rights reserved.