3 resultados para polymer scaffolds, polymer ceramics composites, osteogenic differentiation, osteoblasts, polycaprolactone (PCL), bone tissue engineering

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biocompatibility of chitosan and its similarity with glycosaminoglycans make it attractive for cartilage engineering despite its limited cell adhesion properties. Structural and chemical characteristics of chitosan scaffolds may be improved for cartilage engineering application. We planned to evaluate chitosan meshes produced by a novel technique and the effect of chitosan structure on mesenchymal stem cells (MSCs) chondrogenesis. Another objective was to improve cell adhesion and chondrogenesis on chitosan by modifying the chemical composition of the scaffold (reacetylation, collagen II, or hyaluronic acid (HA) coating). A replica molding technique was developed to produce chitosan meshes of different fiber-width. A polyglycolic acid (PGA) mesh served as a reference. Constructs were analyzed at two and 21 days after seeding chondrocytes with confocal microscopy, scanning electron microscopy, histology, and quantitative analysis (weights, DNA, glycosaminoglycans, collagen II). Chondrocytes maintained their phenotypic appearance and a high viability but attached preferentially to PGA. Matrix production per chondrocyte was superior on chitosan. Chitosan meshes and sponges were analyzed after seeding and culture of MSCs under chondrogenic condition for 21 days. The cellularity was similar between groups but matrix production was greater on meshes. Chitosan and reacetylated-chitosan scaffolds were coated with collagen II or HA. Scaffolds were characterized prior to seeding MSCs. Chitosan meshes were then coated with collagen at two densities. PGA served as a reference. Constructs were evaluated after seeding or culture of MSCs for 21 days in chondrogenic medium. MSCs adhered less to reacetylated-chitosan despite collagen coating. HA did not affect cell adhesion. The cell attachment on chitosan correlated with collagen density. The cell number and matrix production were improved after culture in collagen coated meshes. The differences between PGA and chitosan are likely to result from the chemical composition. Chondrogenesis is superior on chitosan meshes compared to sponges. Collagen II coating is an efficient way to overcome poor cell adhesion on chitosan. These findings encourage the use of chitosan meshes coated with collagen II and confirm the importance of biomimetic scaffolds for tissue engineering. The decreased cell adhesion on reacetylated chitosan and the poor mechanical stability of PGA limit their use for tissue engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aromatic thermosetting copolyester (ATSP) has promise in high-temperature applications. It can be employed as a bulk polymer, as a coating and as a matrix for carbon fiber composites (ATSP/C composites). This work focuses on the applications of high performance ATSP/C composites. The morphology of the ATSP matrix in the presence of carbon fiber was studied. The effect of liquid crystalline character of starting oligomers used to prepare ATSP on the final crystal structure of the ATSP/C composite was evaluated. Matrices obtained by crosslinking of both liquid crystalline oligomers (ATSP2) and non-liquid crystalline oligomers (ATSP1) tend to crystallize in presence of carbon fibers. The crystallite size of ATSP2 is 4 times that of ATSP1. Composites made from ATSP2 yield tougher matrices compared to those made from ATSP1. Thus toughened matrices could be achieved without incorporating any additives by just changing the morphology of the final polymer. The flammability characteristics of ATSP were also studied. The limiting oxygen index (LOI) of bulk ATSP was found to be 40% whereas that of ATSP/C composites is estimated to be 85%. Thus, ATSP shows potential to be used as a flame resistant material, and also as an aerospace reentry shield. Mechanical properties of the ATSP/C composite were characterized. ATSP was observed to bond strongly with reinforcing carbon fibers. The tensile strength, modulus and shear modulus were comparable to those of conventionally used high temperature epoxy resins. ATSP shows a unique capability for healing of interlaminar cracks on application of heat and pressure, via the Interchain Transesterification Reaction (ITR). ITR can also be used for reduction in void volume and healing of microcracks. Thus, ATSP resin systems provide a unique intrinsic repair mechanism compared to any other thermosetting systems in use today. Preliminary studies on measurement of residual stresses for ATSP/C composites indicate that the stresses induced are much lower than that in epoxy/C composites. Thermal fatigue testing suggests that ATSP shows better resistance to microcracking compared to epoxy resins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interference lithography can create large-area, defect-free nanostructures with unique optical properties. In this thesis, interference lithography will be utilized to create photonic crystals for functional devices or coatings. For instance, typical lithographic processing techniques were used to create 1, 2 and 3 dimensional photonic crystals in SU8 photoresist. These structures were in-filled with birefringent liquid crystal to make active devices, and the orientation of the liquid crystal directors within the SU8 matrix was studied. Most of this thesis will be focused on utilizing polymerization induced phase separation as a single-step method for fabrication by interference lithography. For example, layered polymer/nanoparticle composites have been created through the one-step two-beam interference lithographic exposure of a dispersion of 25 and 50 nm silica particles within a photopolymerizable mixture at a wavelength of 532 nm. In the areas of constructive interference, the monomer begins to polymerize via a free-radical process and concurrently the nanoparticles move into the regions of destructive interference. The holographic exposure of the particles within the monomer resin offers a single-step method to anisotropically structure the nanoconstituents within a composite. A one-step holographic exposure was also used to fabricate self- healing coatings that use water from the environment to catalyze polymerization. Polymerization induced phase separation was used to sequester an isocyanate monomer within an acrylate matrix. Due to the periodic modulation of the index of refraction between the monomer and polymer, the coating can reflect a desired wavelength, allowing for tunable coloration. When the coating is scratched, polymerization of the liquid isocyanate is catalyzed by moisture in air; if the indices of the two polymers are matched, the coatings turn transparent after healing. Interference lithography offers a method of creating multifunctional self-healing coatings that readout when damage has occurred.