2 resultados para Type II Site-Specific

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous applications within the mid- and long-wavelength infrared are driving the search for efficient and cost effective detection technologies in this regime. Theoretical calculations have predicted high performance for InAs/GaSb type-II superlattice structures, which rely on mature growth of III-V semiconductors and offer many levels of freedom in design due to band structure engineering. This work focuses on the fabrication and characterization of type-II superlattice infrared detectors. Standard UV-based photolithography was used combined with chemical wet or dry etching techniques in order to fabricate antinomy-based type-II superlattice infrared detectors. Subsequently, Fourier transform infrared spectroscopy and radiometric techniques were applied for optical characterization in order to obtain a detector's spectrum and response, as well as the overall detectivity in combination with electrical characterization. Temperature dependent electrical characterization was used to extract information about the limiting dark current processes. This work resulted in the first demonstration of an InAs/GaSb type-II superlattice infrared photodetector grown by metalorganic chemical vapor deposition. A peak detectivity of 1.6x10^9 Jones at 78 K was achieved for this device with a 11 micrometer zero cutoff wavelength. Furthermore the interband tunneling detector designed for the mid-wavelength infrared regime was studied. Similar results to those previously published were obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estrogens can be labeled with the positron-emitting radionuclide fluorine-18 (t$\sb{1/2}$ = 110 min) by fluoride ion (n-Bu$\sb4$N$\sp{18}$F) displacement of a 16$\beta$-trifluoromethanesulfonate (triflate) derivative of the corresponding estrone 3-triflate, and purification by HPLC. That sequence has been used to synthesize the 11$\beta$-methoxy 1 and 11$\beta$-ethyl 2 analogues of the breast tumor imaging agent, 16$\alpha$-($\sp{18}$F) fluoro-17$\beta$-estradiol (FES). Tissue distribution studies of 1 and 2 in immature female rats show high selectivity for target tissue (T, uterus) vs non-target (NT, muscle and lung), with T/NT ratios being 43 and 17 at one hour after injection for 1 and 2, respectively. The parent estrogen FES has previously been shown to display an intermediate value for tissue selectivity.