169 resultados para Clonagem molecular


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various intrinsic and external factors are constantly attacking the cells causing damage to DNA and to other cellular structures. Cells in turn have evolved with different kinds of mechanisms to protect against the attacks and to repair the damage. Ultraviolet radiation (UVR) is one of the major environmental genotoxic carcinogens that causes inflammation, mutations, immunosuppression, accelerated aging of the skin and skin cancers. Epidermis is the outermost layer of the skin consisting mostly of keratinocytes, whose primary function is to protect the skin against e.g. UV radiation. LIM domain proteins are a group of proteins involved in regulation of cell growth, damage signalling, cell fate determination and signal transduction. Despite their two zinc fingers, LIM domains do not bind to DNA, but rather mediate protein-protein interactions and function as modular protein binding interfaces. We initially identified CSRP1 as UVR-regulated transcript by using expression profiling. Here we have further studied the regulation and function of CRP1, a representative of cysteine rich protein- family consisting of two LIM domains. We find that CRP1 is increased by UVR in primary human keratinocytes and in normal human skin fibroblasts. Ectopic expression of CRP1 protected the cells against UVR and provided a survival advantage, whereas silencing of CRP1 rendered the cells more photosensitive. Actinic keratosis is a premalignant lesion of skin caused by excess exposure to sunlight and sunburn, which may lead to formation of squamous cell carcinoma. The expression of CRP1 was increased in basal keratinocytes of Actinic keratosis patient specimens suggesting that CRP1 may be increased by constant exposure to UVR and may provide survival advantage for the cells also in vivo. In squamous cell carcinoma, CRP1 was only expressed in the fibroblasts surrounding the tumour. Moreover, we found that ectopic expression of CRP1 suppresses cell proliferation. Transforming growth factor beta (TGFbeta) is a multifunctional cytokine that regulates several functions in cell including growth, apoptosis and differentiation, and plays important roles in pathological disorders like cancer and fibrosis. We found that TGFbeta-signalling pathway regulates CRP1 at protein, but not at transcriptional level. The increase was mediated both through Smad and non-Smad signalling pathways involving MAPK/p38. Furthermore, we found that TGFbeta-mediated increase in CRP1 was associated with myofibroblast differentiation, and that CRP1 was significantly more expressed in idiopathic pulmonary fibrosis as compared to normal lung specimens. Since cell contractility is a distinct feature of myofibroblasts, and CRP1 is associated with actin cytoskeleton, we studied the role of CRP1 in cell contractility. CRP1 was found to localize to stress fibres that mediate contractility and to mediate myofibroblast contraction. These studies identify CRP1 as a stress responsive and cytokine regulated cytoskeletal protein that participates in pathological processes involved in fibrotic diseases and cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidemiological studies have shown an elevation in the incidence of asthma, allergic symptoms and respiratory infections among people living or working in buildings with moisture and mould problems. Microbial growth is suspected to have a key role, since the severity of microbial contamination and symptoms show a positive correlation, while the removal of contaminated materials relieves the symptoms. However, the cause-and-effect relationship has not been well established and knowledge of the causative agents is incomplete. The present consensus of indoor microbes relies on culture-based methods. Microbial cultivation and identification is known to provide qualitatively and quantitatively biased results, which is suspected to be one of the reasons behind the often inconsistent findings between objectively measured microbiological attributes and health. In the present study the indoor microbial communities were assessed using culture-independent, DNA based methods. Fungal and bacterial diversity was determined by amplifying and sequencing the nucITS- and16S-gene regions, correspondingly. In addition, the cell equivalent numbers of 69 mould species or groups were determined by quantitative PCR (qPCR). The results from molecular analyses were compared with results obtained using traditional plate cultivation for fungi. Using DNA-based tools, the indoor microbial diversity was found to be consistently higher and taxonomically wider than viable diversity. The dominant sequence types of fungi, and also of bacteria were mainly affiliated with well-known microbial species. However, in each building they were accompanied by various rare, uncultivable and unknown species. In both moisture-damaged and undamaged buildings the dominant fungal sequence phylotypes were affiliated with the classes Dothideomycetes (mould-like filamentous ascomycetes); Agaricomycetes (mushroom- and polypore-like filamentous basidiomycetes); Urediniomycetes (rust-like basidiomycetes); Tremellomycetes and the family Malasseziales (both yeast-like basidiomycetes). The most probable source for the majority of fungal types was the outdoor environment. In contrast, the dominant bacterial phylotypes in both damaged and undamaged buildings were affiliated with human-associated members within the phyla Actinobacteria and Firmicutes. Indications of elevated fungal diversity within potentially moisture-damage-associated fungal groups were recorded in two of the damaged buildings, while one of the buildings was characterized by an abundance of members of the Penicillium chrysogenum and P. commune species complexes. However, due to the small sample number and strong normal variation firm conclusions concerning the effect of moisture damage on the species diversity could not be made. The fungal communities in dust samples showed seasonal variation, which reflected the seasonal fluctuation of outdoor fungi. Seasonal variation of bacterial communities was less clear but to some extent attributable to the outdoor sources as well. The comparison of methods showed that clone library sequencing was a feasible method for describing the total microbial diversity, indicated a moderate quantitative correlation between sequencing and qPCR results and confirmed that culture based methods give both a qualitative and quantitative underestimate of microbial diversity in the indoor environment. However, certain important indoor fungi such as Penicillium spp. were clearly underrepresented in the sequence material, probably due to their physiological and genetic properties. Species specific qPCR was a more efficient and sensitive method for detecting and quantitating individual species than sequencing, but in order to exploit the full advantage of the method in building investigations more information is needed about the microbial species growing on damaged materials. In the present study, a new method was also developed for enhanced screening of the marker gene clone libraries. The suitability of the screening method to different kinds of microbial environments including biowaste compost material and indoor settled dusts was evaluated. The usability was found to be restricted to environments that support the growth and subsequent dominance of a small number microbial species, such as compost material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae are major health problems worldwide, both found in symptomless carriage but also causing even life-threatening infections. The aim of this thesis was to characterise MRSA and S. pneumoniae in detail by using several molecular typing methods for various epidemiological purposes: clonality analysis, epidemiological surveillance, outbreak investigation, and virulence factor analysis. The characteristics of MRSA isolates from the strain collection of the Finnish National Infectious Disease Register (NIDR) and pneumococcal isolates collected from military recruits and children with acute otitis media (AOM) were analysed using various typing techniques. Antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), spa typing, staphylococcal cassette chromosome mec (SCCmec) typing, and the detection of Panton-Valentine leukocidin (PVL) genes were performed for MRSA isolates. Pneumococcal isolates were analysed using antimicrobial susceptibility testing, serotyping, MLST, and by detecting pilus islet 1 (PI-1) and 2 (PI-2) genes. Several international community- and hospital-associated MRSA clones were recognised in Finland. The genetic diversity among MRSA FIN-4 isolates and among FIN-16 isolates was low. Overall, MRSA blood isolates from 1997 to 2006 were genetically diverse. spa typing was found to be a highly discriminatory, rapid and accurate typing method and it also qualifies as the primary typing method in countries with a long history of PFGE-based MRSA strain nomenclature. However, additional typing by another method, e.g. PFGE, is needed in certain situations to be able to provide adequate discrimination for epidemiological surveillance and outbreak investigation. An outbreak of pneumonia was associated with one pneumococcal strain among military recruits, previously healthy young men living in a crowded setting. The pneumococcal carriage rate after the outbreak was found to be exceptionally high. PI-1 genes were detected at a rather low prevalence among pneumococcal isolates from children with AOM. However, the study demonstrated that PI-1 has existed among pneumococcal isolates prior to pneumococcal conjugate vaccine and the increased antimicrobial resistance era. Moreover, PI-1 was found to associate with the serotype rather than the genotype. This study adds to our understanding of the molecular epidemiology of MRSA strains in Finland and the importance of an appropriate genotyping method to be able to perform high-level laboratory-based surveillance of MRSA. Epidemiological and molecular analyses of S. pneumoniae add to our knowledge of the characteristics of pneumococcal strains in Finland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Idiopathic developmental disorders (DDs) affect ~1% of the population worldwide. This being a considerable amount, efforts are being made to elucidate the disease mechanisms. One or several genetic factors cause 30-40% of DDs, and only 10% are caused by environmental factors. The remaining 50% of DD patients go undiagnosed, mostly due to a lack of diagnostic techniques. The cause in most undiagnosed cases is though to be a genetic factor or a combination of genetic and environmental factors. Despite the surge of new technologies entering the market, their implementation into diagnostic laboratories is hampered by costs, lack of information about the expected diagnostic yield, and the wide range of selection. This study evaluates new microarray methods in diagnosing idiopathic DDs, providing information about their added diagnostic value. Study I analysed 150 patients by array comparative genomic hybridization (array CGH, 44K and 244K), with a subsequent 18% diagnostic yield. These results are supported by other studies, indicating an enourmous added diagnostic value of array CGH, compared with conventional cytogenetic analysis. Nevertheless, 80% of the patients remained undiagnosed in Study I. In an effort to diagnose more patients, in Study IV the resolution was increased from 8.9 Kb of the 244K CGH array to 0.7 Kb, by using a single-nucleotide polymorphism (SNP) array. However, no additional pathogenic changes were detected in the 35 patients assessed, and thus, for diagnostic purposes, an array platform with ca 9 Kb resolution appears adequate. The recent vast increase in reports of detected aberrations and associated phenotypes has enabled characterization of several new syndromes first based on a common aberration and thereafter by delineation of common clinical characteristics. In Study II, a familial deletion at 9q22.2q22.32 with variable penetrance was described. Despite several reports of aberrations in the adjacent area at 9q associated with Gorlin syndrome, the patients in this family had a unique phenotype and did not present with the syndrome. In Study III, a familial duplication of chromosome 6p22.2 was described. The duplication caused increased expression of an important enzyme of the γ-aminobutyric acid (GABA) degradation pathway, causing oxidative stress of the brain, and thus, very likely, the mild mental retardation of these patients. These two case studies attempted to pinpoint candidate genes and to resolve the pathogenic mechanism causing the clinical characteristics of the patients. Presenting rare genetic and clinical findings to the international science and medical community enables interpretation of similar findings in other patients. The added value of molecular karyotyping in patients with idiopathic DD is evident. As a first line of testing, arrays with a median resolution of at least 9 Kb should be considered and further characterization of detected aberrations undertaken when possible. Diagnostic whole-exome sequencing may be the best option for patients who remain undiagnosed after high-resolution array analysis.