110 resultados para intestine cell

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tooth development is regulated by sequential and reciprocal interactions between epithelium and mesenchyme. The molecular mechanisms underlying this regulation are conserved and most of the participating molecules belong to several signalling families. Research focusing on mouse teeth has uncovered many aspects of tooth development, including molecular and evolutionary specifi cs, and in addition offered a valuable system to analyse the regulation of epithelial stem cells. In mice the spatial and temporal regulation of cell differentiation and the mechanisms of patterning during development can be analysed both in vivo and in vitro. Follistatin (Fst), a negative regulator of TGFβ superfamily signalling, is an important inhibitor during embryonic development. We showed the necessity of modulation of TGFβ signalling by Fst in three different regulatory steps during tooth development. First we showed that tinkering with the level of TGFβ signalling by Fst may cause variation in the molar cusp patterning and crown morphogenesis. Second, our results indicated that in the continuously growing mouse incisors asymmetric expression of Fst is responsible for the labial-lingual patterning of ameloblast differentiation and enamel formation. Two TGFβ superfamily signals, BMP and Activin, are required for proper ameloblast differentiation and Fst modulates their effects. Third, we identifi ed a complex signalling network regulating the maintenance and proliferation of epithelial stem cells in the incisor, and showed that Fst is an essential modulator of this regulation. FGF3 in cooperation with FGF10 stimulates proliferation of epithelial stem cells and transit amplifying cells in the labial cervical loop. BMP4 represses Fgf3 expression whereas Activin inhibits the repressive effect of BMP4 on the labial side. Thus, Fst inhibits Activin rather than BMP4 in the cervical loop area and limits the proliferation of lingual epithelium, thereby causing the asymmetric maintenance and proliferation of epithelial stem cells. In addition, we detected Lgr5, a Wnt target gene and an epithelial stem cell marker in the intestine, in the putative epithelial stem cells of the incisor, suggesting that Lgr5 is a marker of incisor stem cells but is not regulated by Wnt/β-catenin signalling in the incisor. Thus the epithelial stem cells in the incisor may not be directly regulated by Wnt/β-catenin signalling. In conclusion, we showed in the mouse incisors that modulating the balance between inductive and inhibitory signals constitutes a key mechanism regulating the epithelial stem cells and ameloblast differentiation. Furthermore, we found additional support for the location of the putative epithelial stem cells and for the stemness of these cells. In the mouse molar we showed the necessity of fi ne-tuning the signalling in the regulation of the crown morphogenesis, and that altering the levels of an inhibitor can cause variation in the crown patterning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial surface-associated proteins are important in communication with the environment and bacteria-host interactions. In this thesis work, surface molecules of Lactobacillus crispatus important in host interaction were studied. The L. crispatus strains of the study were known from previous studies to be efficient in adhesion to intestinal tract and ECM. L. crispatus JCM 5810 possess an adhesive surface layer (S-layer) protein, whose functions and domain structure was characterized. We cloned two S-layer protein genes (cbsA; collagen-binding S-layer protein A and silent cbsB) and identified the protein region in CbsA important for adhesion to host tissues, for polymerization into a periodic layer as well as for attachment to the bacterial cell surface. The analysis was done by extensive mutation analysis and by testing His6-tagged fusion proteins from recombinant Escherichia coli as well as by expressing truncated CbsA peptides on the surface of Lactobacillus casei. The N-terminal region (31-274) of CbsA showed efficient and specific binding to collagens, laminin and extracellular matrix on tissue sections of chicken intestine. The N-terminal region also contained the information for formation of periodic S-layer polymer. This region is bordered at both ends by a conserved short region rich in valines, whose substitution to leucines drastically affected the periodic polymer structure. The mutated CbsA proteins that failed to form a periodic polymer, did not bind collagens, which indicates that the polymerized structure of CbsA is needed for collagen-binding ability. The C-terminal region, which is highly identical in S-layer proteins of L. crispatus, Lactobacillus acidophilus and Lactobacillus helveticus, was shown to anchor the protein to the bacterial cell wall. The C-terminal CbsA peptide specifically bound to bacterial teichoic acid and lipoteichoic acids. In conclusion, the N-terminal domain of the S-layer protein of L. crispatus is important for polymerization and adhesion to host tissues, whereas the C-terminal domain anchors the protein to bacterial cell-wall teichoic acids. Lactobacilli are fermentative organisms that effectively lower the surrounding pH. While this study was in progress, plasminogen-binding proteins enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were identified in the extracellular proteome of L. crispatus ST1. In this work, the cell-wall association of enolase and GAPDH were shown to rely on pH-reversible binding to the cell-wall lipoteichoic acids. Enolase from L. crispatus was functionally compared with enolase from L. johnsonii as well as from pathogenic streptococci (Streptococcus pneumoniae, Streptococcus pyogenes) and Staphylococcus aureus. His6-enolases from commensal lactobacilli bound human plasminogen and enhanced its activation by human plasminogen activators similarly to, or even better than, the enolases from pathogens. Similarly, the His6-enolases from lactobacilli exhibited adhesive characteristics previously assigned to pathogens. The results call for more detailed analyses of the role of the host plasminogen system in bacterial pathogenesis and commensalism as well of the biological role and potential health risk of the extracellular proteome in lactobacilli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural stem cell characteristics affected by oncogenic pathways and in a human motoneuron disease Stem cells provide the self-renewing cell pool for developing or regenerating organs. The mechanisms underlying the decisions of a stem or progenitor cell to either self-renew and maintain multipotentiality or alternatively to differentiate are incompletely understood. In this thesis work, I have approached this question by investigating the role of the proto-oncogene Myc in the regulatory functions of neural progenitor cell (NPC) self-renewal, proliferation and differentiation. By using a retroviral transduction technique to create overexpression models in embryonic NPCs cultured as neurospheres, I show that activated levels of Myc increase NPC self-renewal. Furthermore, several mechanisms that regulate the activity of Myc were identified. Myc induced self-renewal is signalled through binding to the transcription factor Miz-1 as shown by the inhibited capacity of a Myc mutant (MycV394D), deficient in binding to Miz-1, to increase self-renewal in NPCs. Furthermore, overexpression of the newly identified proto-oncogene CIP2A recapitulates the effects of Myc overexpression in NPCs. Also the expression levels and in vivo expression patterns of Myc and CIP2A were linked together. CIP2A stabilizes Myc protein levels in several cancer types by inhibiting its degradation and our results suggest the same function for CIP2A in NPCs. Our results also support the conception of self-renewal and proliferation being two separately regulated cellular functions. Finally, I suggest that Myc regulates NPC self-renewal by influencing the way stem and progenitor cells react to the environmental cues that normally dictate the cellular identity of tissues containing self-renewing cells. Neurosphere cultures were also utilised in order to characterise functional defects in a human disease. Neural stem cell cultures obtained post-mortem from foetuses of lethal congenital contracture syndrome (LCCS) were used to reveal possible cell autonomous differentiation defects of patient NPCs. However, LCCS derived NPCs were able to differentiate normally in vitro although several transcriptional differences were identified by using microarray analysis. Proliferation rate of the patient NPCs was also increased as compared to NPCs of age-matched control foetuses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In cancer, a subpopulation of malignant cells expresses markers of normal stem cells. These cells have the potential of initiating tumor growth and therefore also tumor recurrence. Thus, these cells are called cancer stem cells. A myriad of markers have been applied to identify these cells, but no single marker can be found exclusively in cancer stem cells. In many types of cancer, clinical recurrence and tumor progression are the main causes of mortality, despite intense oncological treatment. It has been proposed that the presence of cancer stem cells causes this resistance to therapy. The scope of this thesis is to investigate the role of stem cell markers and genes in the clinical setting. Especially, the aim was to elucidate the clinical significance of stem cell markers as novel prognostic and diagnostic tools in cancer. Tumor biopsy material from central nervous system tumors (oligodendroglioma, astrocytoma and glioblatoma), neural crest derived tumors (pheochromocytomas) and oral carcinoma was screened for stem cell markers. Initially, 15 stem cell markers were screened in a test series of gliomas. The markers applied for expanded tumor analyses (in 305 cases of glioma, 42 cases of pheochromocytoma, and 73 cases of oral carcinoma) were BMI-1, Snail, p16, mdm2, and c-Myc. Data on marker expression was compared with clinical and pathological parameters. In gliomas, BMI-1 expression was found in nearly all tumors analyzed, but the frequency of BMI-1 expressing cells was highly variable, ranging from 1 to 100%. In oligodendroglioma, BMI-1 expression was identified as a prognostic marker independent of tumor grade and clinical parameters. In pheochromocytoma, Snail expression was shown to distinguish between the metastatic and non-metastatic forms of the tumor. Snail expression was seen only in metastatic tumors, whereas non-metastatic tumors did not commonly express Snail. Finally, in oral carcinoma, BMI-1 expression was seen in roughly 80% of tumors, and Snail expression was high or very high in all cases. The lack of BMI-1 expression was associated with early relapse in oral carcinoma.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basement membranes are specialized sheets of extracellular matrix found in contact with epithelia, endothelia, and certain isolated cells. They support tissue architecture and regulate cell behaviour. Laminins are among the main constituents of basement membranes. Due to differences between laminin isoforms, laminins confer structural and functional diversity to basement membranes. The first aim of this study was to gain insights into the potential functions of the then least characterized laminins, alpha4 chain laminins, by evaluating their distribution in human tissues. We thus created a monoclonal antibody specific for laminin alpha4 chain. By immunohistochemistry, alpha4 chain laminins were primarily localized to basement membranes of blood vessel endothelia, skeletal, heart, and smooth muscle cells, nerves, and adipocytes. In addition, alpha4 chain laminins were found in the region of certain epithelial basement membranes in the epidermis, salivary gland, pancreas, esophagus, stomach, intestine, and kidney. Because of the consistent presence of alpha4 chain laminins in endothelial basement membranes of blood vessels, we evaluated the potential roles of endothelial laminins in blood vessels, lymphatic vessels, and carcinomas. Human endothelial cells produced alpha4 and alpha5 chain laminins. In quantitative and morphological adhesion assays, human endothelial cells barely adhered to alpha4 chain-containing laminin-411. The weak interaction of endothelial cells with laminin-411 appeared to be mediated by alpha6beta1 integrin. The alpha5 chain-containing laminin-511 promoted endothelial cell adhesion better than laminin-411, but it did not promote the formation of cell-extracellular matrix adhesion complexes. The adhesion of endothelial cells to laminin-511 appeared to be mediated by Lutheran glycoprotein together with beta1 and alphavbeta3 integrins. The results suggest that these laminins may induce a migratory phenotype in endothelial cells. In lymphatic capillaries, endothelial basement membranes showed immunoreactivity for laminin alpha4, beta1, beta2, and gamma1 chains, type IV and XVIII collagens, and nidogen-1. Considering the assumed inability of alpha4 chain laminins to polymerize and to promote basement membrane assembly, the findings may in part explain the incomplete basement membrane formation in these vessels. Lymphatic capillaries of ovarian carcinomas showed immunoreactivity also for laminin alpha5 chain and its receptor Lutheran glycoprotein, emphasizing a difference between normal and ovarian carcinoma lymphatic capillaries. In renal cell carcinomas, immunoreactivity for laminin alpha4 chain was found in stroma and basement membranes of blood vessels. In most tumours, immunoreactivity for laminin alpha4 chain was also observed in the basement membrane region of tumour cell islets. Renal carcinoma cells produced alpha4 chain laminins. Laminin-411 did not promote adhesion of renal carcinoma cells, but inhibited their adhesion to fibronectin. Renal carcinoma cells migrated more on laminin-411 than on fibronectin. The results suggest that alpha4 chain laminins have a counteradhesive function, and may thus have a role in detachment and invasion of renal carcinoma cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microarrays have a wide range of applications in the biomedical field. From the beginning, arrays have mostly been utilized in cancer research, including classification of tumors into different subgroups and identification of clinical associations. In the microarray format, a collection of small features, such as different oligonucleotides, is attached to a solid support. The advantage of microarray technology is the ability to simultaneously measure changes in the levels of multiple biomolecules. Because many diseases, including cancer, are complex, involving an interplay between various genes and environmental factors, the detection of only a single marker molecule is usually insufficient for determining disease status. Thus, a technique that simultaneously collects information on multiple molecules allows better insights into a complex disease. Since microarrays can be custom-manufactured or obtained from a number of commercial providers, understanding data quality and comparability between different platforms is important to enable the use of the technology to areas beyond basic research. When standardized, integrated array data could ultimately help to offer a complete profile of the disease, illuminating mechanisms and genes behind disorders as well as facilitating disease diagnostics. In the first part of this work, we aimed to elucidate the comparability of gene expression measurements from different oligonucleotide and cDNA microarray platforms. We compared three different gene expression microarrays; one was a commercial oligonucleotide microarray and the others commercial and custom-made cDNA microarrays. The filtered gene expression data from the commercial platforms correlated better across experiments (r=0.78-0.86) than the expression data between the custom-made and either of the two commercial platforms (r=0.62-0.76). Although the results from different platforms correlated reasonably well, combining and comparing the measurements were not straightforward. The clone errors on the custom-made array and annotation and technical differences between the platforms introduced variability in the data. In conclusion, the different gene expression microarray platforms provided results sufficiently concordant for the research setting, but the variability represents a challenge for developing diagnostic applications for the microarrays. In the second part of the work, we performed an integrated high-resolution microarray analysis of gene copy number and expression in 38 laryngeal and oral tongue squamous cell carcinoma cell lines and primary tumors. Our aim was to pinpoint genes for which expression was impacted by changes in copy number. The data revealed that especially amplifications had a clear impact on gene expression. Across the genome, 14-32% of genes in the highly amplified regions (copy number ratio >2.5) had associated overexpression. The impact of decreased copy number on gene underexpression was less clear. Using statistical analysis across the samples, we systematically identified hundreds of genes for which an increased copy number was associated with increased expression. For example, our data implied that FADD and PPFIA1 were frequently overexpressed at the 11q13 amplicon in HNSCC. The 11q13 amplicon, including known oncogenes such as CCND1 and CTTN, is well-characterized in different type of cancers, but the roles of FADD and PPFIA1 remain obscure. Taken together, the integrated microarray analysis revealed a number of known as well as novel target genes in altered regions in HNSCC. The identified genes provide a basis for functional validation and may eventually lead to the identification of novel candidates for targeted therapy in HNSCC.