30 resultados para VASCULAR ENDOTHELIAL GROWTH FACTOR GENE

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intervertebral disc is composed of concentrically arranged components: annulus fibrosus, the transition zone, and central nucleus pulposus. The major disc cell type differs in various parts of the intervertebral disc. In annulus fibrosus a spindle shaped fibroblast-like cell mainly dominates, whereas in central nucleus pulposus the more rounded chondrocyte-like disc cell is the major cell type. At birth the intervertebral disc is well vascularized, but during childhood and adolescence blood vessels become smaller and less numerous. The adult intervertebral disc is avascular and is nourished via the cartilage endplates. On the other hand, degenerated and prolapsed intervertebral discs are again vascularized, and show many changes compared to normal discs, including: nerve ingrowth, change in collagen turnover, and change in water content. Furthermore, the prolapsed intervertebral disc tissue has a tendency to decrease in size over time. Growth factors are polypeptides which regulate cell growth, extracellular matrix protease activity, and vascularization. Oncoproteins c-Fos and c-Jun heterodimerize, forming the AP-1 transcription factor which is expressed in activated cells. In this thesis the differences of growth factor expression in normal intervertebral disc, the degenerated intervertebral disc and herniated intervertebral disc were analyzed. Growth factors of particular interest were basic fibroblast growth factor (bFGF or FGF-2), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and transforming growth factor beta (TGFβ). Cell activation was visualized by the expression of the AP-1 transcription promoters c-Fos and c-Jun. The expression was shown with either mono- or polyclonal antibodies by indirect avidin-biotin-peroxidase immunohistochemical staining method. The normal control material was collected from a tissue bank of five organ donors. The degenerated disc material was from twelve patients operated on for painful degenerative disc disease, and herniated disc tissue material was obtained from 115 patients operated on for sciatica. Normal control discs showed only TGFβ immunopositivity. All other factors studied were immunonegative in the control material. Prolapsed disc material was immunopositive for all factors studied, and this positivity was located either in the disc cells or in blood vessels. Furthermore, neovascularization was noted. Disc cell immunoreaction was shown in chondrocyte-like disc cells or in fibroblast-like disc cells, the former being expressed especially in conglomerates (clusters of disc cells). TGFβ receptor induction was prominent in prolapsed intervertebral disc tissue. In degenerated disc material, the expression of growth factors was analyzed in greater detail in various parts of the disc: nucleus pulposus, anterior annulus fibrosus and posterior annulus fibrosus. PDGF did not show any immunoreactivity, whereas all other studied growth factors were localized either in chondrocyte-like disc cells, often forming clusters, in fibroblast-like disc cells, or in small capillaries. Many of the studied degenerated discs showed tears in the posterior region of annulus fibrosus, but expression of immunopositive growth factors was detected throughout the entire disc. Furthermore, there was a difference in immunopositive cell types for different growth factors. The main conclusion of the thesis, supported by all substudies, is the occurrence of growth factors in disc cells. They may be actively participating in a network regulating disc cell growth, proliferation, extracellular matrix turnover, and neovascularization. Chondrocyte-like disc cells, in particular, expressed growth factors and oncoproteins, highlighting the importance of this cell type in the basic pathophysiologic events involved in disc degeneration and disc rearrangement. The thesis proposes a hypothesis for cellular remodelling in intervertebral disc tissue. In summary, the model presents an activation pattern of different growth factors at different intervertebral disc stages, mechanisms leading to neovascularization of the intervertebral disc in pathological conditions, and alteration of disc cell shape, especially in annulus fibrosus. Chondrocyte-like disc cells become more numerous, and these cells are capable of forming clusters, which appear to be regionally active within the disc. The alteration of the phenotype of disc cells expressing growth factors from fibroblast-like disc cells to chondrocyte-like cells in annulus fibrosus, and the numerous expression of growth factor expressing disc cells in nucleus pulposus, may be a key element both during pathological degeneration of the intervertebral disc, and during the healing process after trauma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heart transplantation is the only therapeutic modality for many end-stage heart diseases but poor long-term survival remains a challenging problem. This is mainly due to the development of cardiac allograft arteriosclerosis (TxCAD) that is an accelerated form of coronary artery disease. Both traditional cardiovascular and transplantation-related risk factors for TxCAD have been identified but options for therapy are limited. TxCAD involves dysfunction of cardiac allograft vascular cells. Activated endothelial cells (EC) regulate allograft inflammation and secrete smooth muscle cell (SMC) growth factors. In turn, SMC and their progenitors invade the intima of the injured vessels and occlude the affected coronary arteries. Different vascular growth factors have to be delicately regulated in normal vascular development. In the present study, experimental heterotopic transplantation models were used to study the role of angiogenic and pro-inflammatory vascular endothelial growth factor (VEGF), EC growth factor angiopoietin (Ang), and SMC mitogen platelet-derived growth factor (PDGF) in the development of TxCAD. Pharmacological and gene transfer approaches were used to target these growth factors and to assess their therapeutic potential. This study shows that alloimmune response in heart transplants upregulates VEGF expression, and induces allograft angiogenesis that involves donor-derived primitive EC. Intracoronary adenoviral VEGF gene transfer increased macrophage infiltration, intimal angiogenesis and TxCAD. VEGF inhibition with PTK787 decreased allograft inflammation and TxCAD, and simultaneous PDGF inhibition with imatinib further decreased TxCAD. Specific inhibition of two VEGF-receptors (VEGFR) decreased allograft inflammation and TxCAD, and VEGFR-2 inhibition normalized the density of primitive and mature capillaries in the allografts. Adenovirus-mediated transient Ang1 expression in the allograft had anti-inflammatory and anti-arteriosclerotic effects. Adeno-associated virus (AAV)-mediated prolonged Ang1 or Ang2 expression had similar anti-inflammatory effects. However, AAV-Ang1 activated allograft SMC whereas AAV-Ang2 had no effects on SMC activation and decreased the development of TxCAD. These studies indicate an interplay of inflammation, angiogenesis and arteriosclerosis in cardiac allografts, and show that vascular growth factors are important regulators in the process. Also, VEGF inhibition, PDGF inhibition and angiopoietin therapy with clinically-relevant pharmacological agents or novel gene therapy approaches may counteract vascular dysfunction in cardiac allografts, and have beneficial effects on the survival of heart transplant patients in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene therapy is a promising novel approach for treating cancers resistant to or escaping currently available modalities. Treatment approaches are based on taking advantage of molecular differences between normal and tumor cells. Various strategies are currently in clinical development with adenoviruses as the most popular vehicle. Recent developments include improving targeting strategies for gene delivery to tumor cells with tumor specific promoters or infectivity enhancement. A rapidly developing field is as well replication competent agents, which allow improved tumor penetration and local amplification of the anti-tumor effect. Adenoviral cancer gene therapy approaches lack cross-resistance with other treatment options and therefore synergistic effects are possible. This study focused on development of adenoviral vectors suitable for treatment of various gynecologic cancer types, describing the development of the field from non-replicating adenoviral vectors to multiple-modified conditional replicating viruses. Transcriptional targeting of gynecologic cancer cells by the use of the promoter of vascular endothelial growth factor receptor type 1 (flt-1) was evaluated. Flt-1 is not expressed in the liver and thus an ideal promoter for transcriptional targeting of adenoviruses. Our studies implied that the flt-1 promoter is active in teratocarcinomas.and therefore a good candidate for development of oncolytic adenoviruses for treatment of this often problematic disease with then poor outcome. A tropism modified conditionally replicating adenovirus (CRAd), Ad5-Δ24RGD, was studied in gynecologic cancers. Ad5-Δ24RGD is an adenovirus selectively replication competent in cells defective in the p16/Rb pathway, including many or most tumor cells. The fiber of Ad5-Δ24RGD contains an integrin binding arginine-glycine-aspartic acid motif (RGD-4C), allowing coxackie-adenovirus receptor independent infection of cancer cells. This approach is attractive because expression levels of CAR are highly variable and often low on primary gynecological cancer cells. Oncolysis could be shown for a wide variety of ovarian and cervical cancer cell lines as well as primary ovarian cancer cell spheroids, a novel system developed for in vitro analysis of CRAds on primary tumor substrates. Biodistribution was evaluated and preclinical safety data was obtained by demonstrating lack of replication in human peripheral blood mononuclear cells. The efficicacy of Ad5-Δ24RGD was shown in different orthotopic murine models including a highly aggressive intraperitoneal model of disseminated ovarian cancer cells, where Ad5-Δ24RGD resulted in complete eradication of intraperitoneal disease in half of the mice. To further improve the selectivity and specificity of CRAds, triple-targeted oncolytic adenoviruses were cloned, featuring the cyclo-oxygenase-2 (cox-2) promoter, E1A transcomplementation and serotype chimerism. Those viruses were evaluated on ovarian cancer cells for specificity and oncolytic potency with regard to two different cox2 versions and three different variants of E1A (wild type, delta24 and delta2delta24). Ad5/3cox2Ld24 emerged as the best combination due to enhanced selectivity without potency lost in vitro or in an aggressive intraperitoneal orthotopic ovarian tumor model. In summary, the preclinical therapeutic efficacy of the CRAds tested in this study, taken together with promising biodistribution and safety data, suggest that these CRAds are interesting candidates for translation into clinical trials for gynecologic cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The circulatory system consists of two vessel types, which act in concert but significantly differ from each other in several structural and functional aspects as well as in mechanisms governing their development. The blood vasculature transports oxygen, nutrients and cells to tissues whereas the lymphatic vessels collect extravasated fluid, macromolecules and cells of the immune system and return them back to the blood circulation. Understanding the molecular mechanisms behind the developmental and functional regulation of the lymphatic system long lagged behind that of the blood vasculature. Identification of several markers specific for the lymphatic endothelium, and the discovery of key factors controlling the development and function of the lymphatic vessels have greatly facilitated research in lymphatic biology over the past few years. Recognition of the crucial importance of lymphatic vessels in certain pathological conditions, most importantly in tumor metastasis, lymphedema and inflammation, has increased interest in this vessel type, for so long overshadowed by its blood vascular cousin. VEGF-C (Vascular Endothelial Growth Factor C) and its receptor VEGFR-3 are essential for the development and maintenance of embryonic lymphatic vasculature. Furthermore, VEGF-C has been shown to be upregulated in many tumors and its expression found to positively correlate with lymphatic metastasis. Mutations in the transcription factor FOXC2 result in lymphedema-distichiasis (LD), which suggests a role for FOXC2 in the regulation of lymphatic development or function. This study was undertaken to obtain more information about the role of the VEGF-C/VEGFR-3 pathway and FOXC2 in regulating lymphatic development, growth, function and survival in physiological as well as in pathological conditions. We found that the silk-like carboxyterminal propeptide is not necessary for the lymphangiogenic activity of VEGF-C, but enhances it, and that the aminoterminal propeptide mediates binding of VEGF-C to the neuropilin-2 coreceptor, which we suggest to be involved in VEGF-C signalling via VEGFR-3. Furthermore, we found that overexpression of VEGF-C increases tumor lymphangiogenesis and intralymphatic tumor growth, both of which could be inhibited by a soluble form of VEGFR-3. These results suggest that blocking VEGFR-3 signalling could be used for prevention of lymphatic tumor metastasis. This might prove to be a safe treatment method for human cancer patients, since inhibition of VEGFR-3 activity had no effect on the normal lymphatic vasculature in adult mice, though it did lead to regression of lymphatic vessels in the postnatal period. Interestingly, in contrast to VEGF-C, which induces lymphangiogenesis already during embryonic development, we found that the related VEGF-D promotes lymphatic vessel growth only after birth. These results suggest, that the lymphatic vasculature undergoes postnatal maturation, which renders it independent of ligand induced VEGFR-3 signalling for survival but responsive to VEGF-D for growth. Finally, we show that FOXC2 is necessary for the later stages of lymphatic development by regulating the morphogenesis of lymphatic valves, as well as interactions of the lymphatic endothelium with vascular mural cells, in which it cooperates with VEGFR-3. Furthermore, our study indicates that the absence of lymphatic valves, abnormal association of lymphatic capillaries with mural cells and an increased amount of basement membrane underlie the pathogenesis of LD. These findings have given new insight into the mechanisms of normal lymphatic development, as well as into the pathogenesis of diseases involving the lymphatic vasculature. They also reveal new therapeutic targets for the prevention and treatment of tumor metastasis and lymphatic vascular failure in certain forms of lymphedema. Several interesting questions were posed that still need to be addressed. Most importantly, the mechanism of VEGF-C promoted tumor metastasis and the molecular nature of the postnatal lymphatic vessel maturation remain to be elucidated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The circulatory system consists of the blood and lymphatic vessels. While blood vessels transport oxygen, cells, and nutrients to tissues, the lymphatic vessels collect fluid, cells, and plasma proteins from tissues to return back to the blood circulation. Angiogenesis, the growth of new blood vessels from pre-existing ones, is an important process involved in several physiological conditions such as inflammation, wound healing, and embryonic development. Furthermore, angiogenesis is found in many pathological conditions such as atherosclerosis and the growth and differentiation of solid tumors. Many tumor types spread via lymphatic vessels to form lymph node metastasis. The elucidation of the molecular players coordinating development of the vascular system has provided an array of tools for further insight of the circulatory system. The discovery of the Vascular Endothelial Growth Factor (VEGF) family members and their tyrosine kinase receptors (VEGFRs) has facilitated the understanding of the vasculature in different physiological and pathological situations. The VEGFRs are expressed on endothelial cells and mediate the growth and maintenance of both the blood and lymphatic vasculatures. This study was undertaken to address the role of VEGFR-2 specific signaling in maturation of blood vessels during neoangiogenesis and in lymphangiogenesis. We also wanted to differentiate between VEGFR-2 and VEGFR-3 specific signaling in lymphangiogenesis. We found that specific VEGFR-2 stimulation alone by gene therapeutic methods is not sufficient for production of mature blood vessels. However, VEGFR-2 stimulation in combination with expression of platelet-derived growth factor D (PDGF-D), a recently identified member of the PDGF growth factor family, was capable of stabilizing these newly formed vessels. Signaling through VEGFR-3 is crucial during developmental lymphangiogenesis, but we showed that the lymphatic vasculature becomes independent of VEGFR-3 signaling after the postnatal period. We also found that VEGFR-2 specific stimulation cannot rescue the loss of lymphatic vessels when VEGFR-3 signaling is blocked and that VEGFR-2 specific signals promote lymphatic vessel enlargement, but are not involved in vessel sprouting to generate new lymphatic vessels in vivo, in contrast to the VEGFR-2 dependent sprouting observed in blood vessels. In addition, we compared the inhibitory effects of a small molecular tyrosine kinase inhibitor of VEGFR-2 vs. VEGFR-3 specific signaling in vitro and in vivo. Our results showed that the tyrosine kinase inhibitor could equally affect physiological and pathological processes dependent on VEGFR-2 and VEGFR-3 driven angiogenesis or lymphangiogenesis. These results provide new insights into the VEGFR specific pathways required for pre- and postnatal angiogenesis as well as lymphangiogenesis, which could provide important targets and therapies for treatment of diseases characterized by abnormal angiogenesis or lymphangiogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pathogenesis of inflammatory rheumatic diseases, including rheumatoid arthritis (RA) and spondyloarthropathies (SpAs) such as reactive arthritis (ReA), is incompletely understood. ReA is a sterile joint inflammation, which may follow a distal infection caused by Gram-negative bacteria that have lipopolysaccharide (LPS) in their outer membrane. The functions of innate immunity that may affect the pathogenesis, prognosis and treatment of these diseases were studied in this thesis. When compared with healthy controls, whole blood monocytes of healthy subjects with previous ReA showed enhanced capacity to produce TNF, an essential proinflammatory cytokine, in response to adherent conditions (mimicking vascular endothelium made adherent by inflammatory signals) and non-specific protein kinase C stimulation. Also, blood neutrophils of these subjects showed high levels of CD11b, an important adhesion molecule, in response to adherence or LPS. Thus, high responsiveness of monocytes and neutrophils when encountering inflammatory stimuli may play a role in the pathogenesis of ReA. The results also suggested that the known risk allele for SpAs, HLA-B27, may be an additive contributor to the observed differences. The promoter polymorphisms TNF 308A and CD14 (gene for an LPS receptor component) 159T were found not to increase the risk of acute arthritis. However, all female patients who developed chronic SpA had 159T and none of them had 308A, possibly reflecting an interplay between hormonal and inflammatory signals in the development of chronic SpA. Among subjects with early RA, those having the polymorphic TLR4 +896G allele (causing the Asp299Gly change in TLR4, another component of LPS receptor) required a combination of disease-modifying antirheumatic drugs to achieve remission. It is known that rapid treatment response is essential in order to maintain the patients work ability. Hence, +896G might be a candidate marker for identifying the patients who need combination treatment. The production of vascular endothelial growth factor (VEGF), which strongly promotes vascular permeability and angiogenesis that takes place e.g. early in rheumatic joints, was induced by LPS and inhibited by interferon (IFN)-alpha in peripheral blood mononuclear cells. These long-living cells might provide a source of VEGF when stimulated by LPS and migrating to inflamed joints, and the effect of IFN-alpha may contribute to the clinical efficacy of this cytokine in inhibiting joint inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The blood vascular system is a closed circulatory system, responsible for delivering oxygen and nutrients to the tissues. In contrast, the lymphatic vascular system is a blind-ended transport system that collects the extravasated tissue fluid from the capillary beds, and transports it back to the blood circulation. Failure in collecting or transporting the lymph, due to defects in the lymphatic vasculature, leads to accumulation of extra fluid in the tissues, and consequently to tissue swelling lymphedema. The two vascular systems function in concert. They are structurally related, but their development is regulated by separate, however overlapping, molecular mechanisms. During embryonic development, blood vessels are formed by vasculogenesis and angiogenesis, processes largely mediated by members of the vascular endothelial growth factor (VEGF) family and their tyrosine kinase receptors. The lymphatic vessels are formed after the cardiovascular system is already functional. This process, called lymphangiogenesis, is controlled by distinct members of the VEGF family, together with the transcription factors Prox1 and Sox18. After the primary formation of the vessels, the vasculature needs to mature and remodel into a functional network of hierarchically organized vessels: the blood vasculature into arteries, capillaries and veins; and the lymphatic vasculature into lymphatic capillaries, responsible for the uptake of the extravasated fluid from the tissues, and collecting vessels, responsible for the transport of the lymph back to the blood circulation. A major event in the maturation of the lymphatic vasculature is the formation of collecting lymphatic vessels. These vessels are characterized by the presence of intraluminal valves, preventing backflow of the lymph, and a sparse coverage of smooth muscle cells, which help in pumping the lymph forward. In our study, we have characterized the molecular and morphological events leading to formation of collecting lymphatic vessels. We found that this process is regulated cooperatively by the transcription factors Foxc2 and NFATc1. Mice lacking either Foxc2 or active NFATc1 fail to remodel the primary lymphatic plexus into functional lymphatic capillaries and collecting vessels. The resulting vessels lack valves, display abnormal expression of lymphatic molecules, and are hyperplastic. Moreover, the lymphatic capillaries show aberrant sprouting, and are abnormally covered with smooth muscle cells. In humans, mutations in FOXC2 lead to Lymphedema-Distichiasis (LD), a disabling disease characterized by swelling of the limbs due to insufficient lymphatic function. Our results from Foxc2 mutant mice and LD patients indicate that the underlying cause for lymphatic failure in LD is agenesis of collecting lymphatic valves and aberrant recruitment of periendothelial cells and basal lamina components to lymphatic capillaries. Furthermore, we show that liprin β1, a poorly characterized member of the liprin family of cytoplasmic proteins, is highly expressed in lymphatic endothelial cells in vivo, and is required for lymphatic vessel integrity. These data highlight the important role of FOXC2, NFATc1 and liprin β1 in the regulation of lymphatic development, specifically in the maturation and formation of the collecting lymphatic vessels. As damage to collecting vessels is a major cause of lymphatic dysfunction in humans, our results also suggest that FOXC2 and NFATc1 are potential targets for therapeutic intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aims of this Thesis was to evaluate the role of proangiogenic placental growth factor (PlGF), antiangiogenic endostatin and lymphangiogenic vascular endothelial growth factor (VEGF) -C as well as the receptors vascular endothelial growth factor receptor (VEGFR) -2 and VEGFR-3 during lung development and in development of lung injury in preterm infants. The studied growth factors were selected due to a close relationship with VEGF-A; a proangiogenic growth factor important in normal lung angiogenesis and lung injury in preterm infants. The thesis study consists of three analyses. I: Lung samples from fetuses, preterm and term infants without lung injury, as well as preterm infants with acute and chronic lung injury were stained by immunohistochemistry for PlGF, endostatin, VEGF-C, VEGFR-2 and VEGFR-3. II: Tracheal aspirate fluid (TAF) was collected in the early postnatal period from a patient population consisting of 59 preterm infants, half developing bronchopulmonary dysplasia (BPD) and half without BPD. PlGF, endostatin and VEGF-C concentrations were measured by commercial enzyme-linked immunosorbent assay (ELISA). III: Cord plasma was collected from very low birth weight (VLBW) (n=92) and term (n=48) infants in conjuncture with birth and endostatin concentrations were measured by ELISA. I: All growth factors and receptors studied were consistently stained in immunohistochemistry throughout development. For endostatin in early respiratory distress syndrome (RDS), no alveolar epithelial or macrophage staining was seen, whereas in late RDS and BPD groups, both alveolar epithelium and macrophages stained positively in approximately half of the samples. VEGFR-2 staining was fairly consistent, except for the fact that capillary endothelial staining in the BPD group was significantly decreased. II: During the first postnatal week in TAF mean PlGF concentrations were stable whereas mean endostatin and VEGF-C concentrations decreased. Higher concentrations of endostatin and VEGF-C correlated with lower birth weight (BW) and associated with administration of antenatal betamethasone. Parameters reflecting prenatal lung inflammation associated with lower PlGF, endostatin and VEGF-C concentrations. A higher mean supplemental fraction of inspired oxygen during the first 2 postnatal weeks (FiO2) correlated with higher endostatin concentrations. III: Endostatin concentrations in term infants were significantly higher than in VLBW infants. In VLBW infants higher endostatin concentrations associated with the development of BPD, this association remained significant after logistic regression analysis. We conclude that PlGF, endostatin and VEGF-C all have a physiological role in the developing lung. Also, the VEGFR-2 expression profile seems to reflect the ongoing differentiation of endothelia during development. Both endostatin and VEGFR-2 seem to be important in the development of BPD. During the latter part of the first postnatal week, preterm infants developing BPD have lower concentrations of VEGF-A in TAF. Our findings of disrupted VEGFR-2 staining in capillary and septal endothelium seen in the BPD group, as well as the increase in endostatin concentrations both in TAF and cord plasma associated with BPD, seem to strengthen the notion that there is a shift in the angiogenic balance towards a more antiangiogenic environment in BPD. These findings support the vascular hypothesis of BPD.