172 resultados para Molecular cytogenetic

em Helda - Digital Repository of University of Helsinki


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over the past years, much research on sarcomas based on low-resolution cytogenetic and molecular cytogenetic methods has been published, leading to the identification of genetic abnormalities partially underlying the tumourigenesis. Continued progress in the identification of genetic events such as copy number aberrations relies upon adapting the rapidly evolving high-resolution microarray technology, which will eventually provide novel insights into sarcoma biology, and targets for both diagnostics and drug development. The aim of this Thesis was to characterize DNA copy number changes that are involved in the pathogenesis of soft tissue leiomyosarcoma (LMS), dermatofibrosarcoma protuberans (DFSP), osteosarcoma (OS), malignant fibrous histiocytoma (MFH), and uterine leiomyosarcoma (ULMS) by applying fine resolution array comparative genomic hybridization (aCGH) technology. Both low- and high-grade LMS tumours showed distinct copy number patterns, in addition to sharing two minimal common regions of gains and losses. Small aberrations were detected by aCGH, which were beyond the resolution of chromosomal comparative genomic hybridization (cCGH). DFSP tumours analysed by aCGH showed gains in 17q, 22q, and 21 additional gained regions, but only one region (22q) with copy number loss. Recurrent amplicons identified in OS by aCGH were 12q11-q15, 8q, 6p12-p21, and 17p. Amplicons 12q and 17p were further characterized in detail. The amplicon at 17p was characterized by aCGH in low- and high-grade LMS, OS, and MFH. In all but one case this amplicon, with minimal common regions of gains at 17p11-p12, started with the distal loss of 17p13-pter. OS and high-grade LMS were grouped together as they showed a complex pattern of copy number gains and amplifications at 17p, whereas MFH and low-grade LMS showed a continuous pattern of copy number gains and amplification at 17p. In addition to the commonly gained and lost regions identified in ULMS by aCGH, various biological processes affected by these copy number changes were also indicated by pathway analysis. The three novel findings obtained in this work were: characterization of amplicon 17p in low- and high-grade LMS and MFH, profiles of DNA copy number changes in LMS, and detection of various pathways affected by copy number changes in ULMS. These studies have not been undertaken previously by aCGH technology, thus this Thesis adds new information regarding DNA copy number changes in sarcomas. In conclusion, the aCGH technique used in this Thesis has provided new insights into the genetics of sarcomas by detecting the precise regions affected by copy number changes and some potential candidate target genes within those regions, which had not been uncovered by previously applied low resolution techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ihon T-solulymfoomat (cutaneous T-cell lymphoma, CTCL) ovat ryhmä imukudossyöpiä, joiden esiintyvyys on nousussa erityisesti länsimaissa. Taudin syntymekanismit ovat suurelta osin tuntemattomat, diagnostiikka on vaikeaa ja siksi usein viivästynyttä eikä parantavaa hoitoa ole. CTCL ilmenee iho-oirein, vaikka syöpäsolut eivät ole iholla normaalisti esiintyviä soluja, vaan elimistön puolustusjärjestelmän soluja, jotka ovat tuntemattomasta syystä vaeltaneet iholle. Syöpäsolut ovat kypsiä T-auttajasoluja (Th-soluja) ja ilmentävät tyypin 2 immuunivasteelle ominaisia sytokiineja. Kromosomaalinen epästabiilius on tautiryhmän keskeinen piirre. CTCL-potilailla on lisääntynyt riski sairastua myös muihin syöpiin, erityisesti keuhkosyöpään ja non-Hodgkin –lymfoomiin. Väitöskirjatutkimuksen tavoitteena oli havaita CTCL:n syntymekanismeja selvittäviä kromosomi- ja geenimuutoksia. Erityisesti tavoitteena oli identifioida molekyylejä, jotka soveltuisivat diagnostisiksi merkkiaineiksi tai täsmähoidon kohteeksi. Työssä on tutkittu kahta tautiryhmän yleisintä muotoa, mycosis fungoidesta (MF) ja Sezaryn syndroomaa (SS) sekä harvinaisempaa vaikeasti diagnosoitavaa subkutaanista pannikuliitin kaltaista T-solulymfoomaa (SPTL). Lisäksi on tutkittu CTCL:ään liittyvää keuhkosyöpää ja verrattu sitä tavalliseen (primaariin) keuhkosyöpään. Tutkimusmenetelminä on käytetty esimerkiksi molekyylisytogeneettisiä metodeja ja mikrosiruja. Väitöskirjatyössä havaittiin ensimmäinen CTCL:lle ominainen toistuva geenitason muutos: puutos- tai katkoskohta NAV3-geenissä. Tämän geenipoikkeavuuden havaittiin esiintyvän useissa taudin alaryhmissä (MF, SS, SPTL). NAV3-geenipuutoksen osoittaminen FISH-tekniikalla on sovellettavissa kliiniseen diagnostiikkaan. Tutkimukset geenipuutoksen aiheuttamista toiminnallisista seurauksista ovat käynnissä. Työssä saatiin myös uutta tietoa taudin syntymekanismeista havaitsemalla useiden Th1-tyypin immuunivasteelle ominaisten geenien alentunut ilmeneminen CTCL-potilailla. Tämän lisäksi potilasnäytteissä havaittiin eräiden solun pinta-antigeenien lisääntynyt ilmeneminen, mikä luo pohjan uusien vasta-ainepohjaisten täsmähoitojen kehittämiselle. Väitöskirjatutkimuksessa todettiin myös CTCL:ään liittyvän keuhkosyövän eroavan kromosomi- ja geenimuutosten suhteen verrokkikeuhkosyövästä, mikä jatkossa antaa aiheen tutkia syöpäkantasolujen merkitystä CTCL:n ja sen liitännäiskasvainten kehittymisen taustalla.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Idiopathic developmental disorders (DDs) affect ~1% of the population worldwide. This being a considerable amount, efforts are being made to elucidate the disease mechanisms. One or several genetic factors cause 30-40% of DDs, and only 10% are caused by environmental factors. The remaining 50% of DD patients go undiagnosed, mostly due to a lack of diagnostic techniques. The cause in most undiagnosed cases is though to be a genetic factor or a combination of genetic and environmental factors. Despite the surge of new technologies entering the market, their implementation into diagnostic laboratories is hampered by costs, lack of information about the expected diagnostic yield, and the wide range of selection. This study evaluates new microarray methods in diagnosing idiopathic DDs, providing information about their added diagnostic value. Study I analysed 150 patients by array comparative genomic hybridization (array CGH, 44K and 244K), with a subsequent 18% diagnostic yield. These results are supported by other studies, indicating an enourmous added diagnostic value of array CGH, compared with conventional cytogenetic analysis. Nevertheless, 80% of the patients remained undiagnosed in Study I. In an effort to diagnose more patients, in Study IV the resolution was increased from 8.9 Kb of the 244K CGH array to 0.7 Kb, by using a single-nucleotide polymorphism (SNP) array. However, no additional pathogenic changes were detected in the 35 patients assessed, and thus, for diagnostic purposes, an array platform with ca 9 Kb resolution appears adequate. The recent vast increase in reports of detected aberrations and associated phenotypes has enabled characterization of several new syndromes first based on a common aberration and thereafter by delineation of common clinical characteristics. In Study II, a familial deletion at 9q22.2q22.32 with variable penetrance was described. Despite several reports of aberrations in the adjacent area at 9q associated with Gorlin syndrome, the patients in this family had a unique phenotype and did not present with the syndrome. In Study III, a familial duplication of chromosome 6p22.2 was described. The duplication caused increased expression of an important enzyme of the γ-aminobutyric acid (GABA) degradation pathway, causing oxidative stress of the brain, and thus, very likely, the mild mental retardation of these patients. These two case studies attempted to pinpoint candidate genes and to resolve the pathogenic mechanism causing the clinical characteristics of the patients. Presenting rare genetic and clinical findings to the international science and medical community enables interpretation of similar findings in other patients. The added value of molecular karyotyping in patients with idiopathic DD is evident. As a first line of testing, arrays with a median resolution of at least 9 Kb should be considered and further characterization of detected aberrations undertaken when possible. Diagnostic whole-exome sequencing may be the best option for patients who remain undiagnosed after high-resolution array analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cathepsin D (CTSD) is a lysosomal protease, the deficiency of which is fatal and associated with neurodegeneration. CTSD knock-out mice, which die at the age of four weeks, show intestinal necrosis, loss of lymphoid cells and moderate pathological changes in the brain. An active-site mutation in the CTSD gene underlies a neurodegenerative disease in newborn sheep, characterized by brain atrophy without any changes to visceral tissues. The CTSD deficiences belong to the group of neuronal ceroid-lipofuscinoses (NCLs), severe neurodegenerative lysosomal storage disorders. The aim of this thesis was to examine the molecular and cellular mechanisms behind neurodegeneration in CTSD deficiency. We found the developmental expression pattern of CTSD to resemble that of synaptophysin and the increasing expression of CTSD to coincide with the active period of myelination in the rat brain, suggesting a role for CTSD in early rat brain development. An active-site mutation underlying the congenital ovine NCL not only affected enzymatic activity, but also changed the stability, processing and transport of the mutant protein, possibly contributing to the disease pathogenesis. We also provide CTSD deficiency as a first molecular explanation for human congenital NCL, a lysosomal storage disorder, characterized by neuronal loss and demyelination in the central nervous system. Finally, we show the first evidence for synaptic abnormalities and thalamocortical changes in CTSD-deficient mice at the molecular and ultrastructural levels. Keywords: cathepsin D, congenital, cortex, lysosomal storage disorder, lysosome, mutation, neurodegeneration, neuronal ceroid-lipofuscinosis, overexpression, synapse, thalamus

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microarrays have a wide range of applications in the biomedical field. From the beginning, arrays have mostly been utilized in cancer research, including classification of tumors into different subgroups and identification of clinical associations. In the microarray format, a collection of small features, such as different oligonucleotides, is attached to a solid support. The advantage of microarray technology is the ability to simultaneously measure changes in the levels of multiple biomolecules. Because many diseases, including cancer, are complex, involving an interplay between various genes and environmental factors, the detection of only a single marker molecule is usually insufficient for determining disease status. Thus, a technique that simultaneously collects information on multiple molecules allows better insights into a complex disease. Since microarrays can be custom-manufactured or obtained from a number of commercial providers, understanding data quality and comparability between different platforms is important to enable the use of the technology to areas beyond basic research. When standardized, integrated array data could ultimately help to offer a complete profile of the disease, illuminating mechanisms and genes behind disorders as well as facilitating disease diagnostics. In the first part of this work, we aimed to elucidate the comparability of gene expression measurements from different oligonucleotide and cDNA microarray platforms. We compared three different gene expression microarrays; one was a commercial oligonucleotide microarray and the others commercial and custom-made cDNA microarrays. The filtered gene expression data from the commercial platforms correlated better across experiments (r=0.78-0.86) than the expression data between the custom-made and either of the two commercial platforms (r=0.62-0.76). Although the results from different platforms correlated reasonably well, combining and comparing the measurements were not straightforward. The clone errors on the custom-made array and annotation and technical differences between the platforms introduced variability in the data. In conclusion, the different gene expression microarray platforms provided results sufficiently concordant for the research setting, but the variability represents a challenge for developing diagnostic applications for the microarrays. In the second part of the work, we performed an integrated high-resolution microarray analysis of gene copy number and expression in 38 laryngeal and oral tongue squamous cell carcinoma cell lines and primary tumors. Our aim was to pinpoint genes for which expression was impacted by changes in copy number. The data revealed that especially amplifications had a clear impact on gene expression. Across the genome, 14-32% of genes in the highly amplified regions (copy number ratio >2.5) had associated overexpression. The impact of decreased copy number on gene underexpression was less clear. Using statistical analysis across the samples, we systematically identified hundreds of genes for which an increased copy number was associated with increased expression. For example, our data implied that FADD and PPFIA1 were frequently overexpressed at the 11q13 amplicon in HNSCC. The 11q13 amplicon, including known oncogenes such as CCND1 and CTTN, is well-characterized in different type of cancers, but the roles of FADD and PPFIA1 remain obscure. Taken together, the integrated microarray analysis revealed a number of known as well as novel target genes in altered regions in HNSCC. The identified genes provide a basis for functional validation and may eventually lead to the identification of novel candidates for targeted therapy in HNSCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The androgen receptor (AR) mediates the effects of the male sex-steroid hormones (androgens), testosterone and 5?-dihydrotestosterone. Androgens are critical in the development and maintenance of male sexual characteristics. AR is a member of the steroid receptor ligand-inducible transcription factor family. The steroid receptor family is a subgroup of the nuclear receptor superfamily that also includes receptors for the active forms of vitamin A, vitamin D3, and thyroid hormones. Like all nuclear receptors, AR has a conserved modular structure consisting of a non-conserved amino-terminal domain (NTD), containing the intrinsic activation function 1, a highly conserved DNA-binding domain, and a conserved ligand-binding domain (LBD) that harbors the activation function 2. Each of these domains plays an important role in receptor function and signaling, either via intra- and inter-receptor interactions, interactions with specific DNA sequences, termed hormone response elements, or via functional interactions with domain-specific proteins, termed coregulators (coactivators and corepressors). Upon binding androgens, AR acquires a new conformational state, translocates to the nucleus, binds to androgen response elements, homodimerizes and recruits sequence-specific coregulatory factors and the basal transcription machinery. This set of events is required to activate gene transcription (expression). Gene transcription is a strictly modulated process that governs cell growth, cell homeostasis, cell function and cell death. Disruptions of AR transcriptional activity caused by receptor mutations and/or altered coregulator interactions are linked to a wide spectrum of androgen insensitivity syndromes, and to the pathogenesis of prostate cancer (CaP). The treatment of CaP usually involves androgen depletion therapy (ADT). ADT achieves significant clinical responses during the early stages of the disease. However, under the selective pressure of androgen withdrawal, androgen-dependent CaP can progress to an androgen-independent CaP. Androgen-independent CaP is invariably a more aggressive and untreatable form of the disease. Advancing our understanding of the molecular mechanisms behind the switch in androgen-dependency would improve our success of treating CaP and other AR related illnesses. This study evaluates how clinically identified AR mutations affect the receptor s transcriptional activity. We reveal that a potential molecular abnormality in androgen insensitivity syndrome and CaP patients is caused by disruptions of the important intra-receptor NTD/LBD interaction. We demonstrate that the same AR LBD mutations can also disrupt the recruitment of the p160 coactivator protein GRIP1. Our investigations reveal that 30% of patients with advanced, untreated local CaP have somatic mutations that may lead to increases in AR activity. We report that somatic mutations that activate AR may lead to early relapse in ADT. Our results demonstrate that the types of ADT a CaP patient receives may cause a clustering of mutations to a particular region of the receptor. Furthermore, the mutations that arise before and during ADT do not always result in a receptor that is more active, indicating that coregulator interactions play a pivotal role in the progression of androgen-independent CaP. To improve CaP therapy, it is necessary to identify critical coregulators of AR. We screened a HeLa cell cDNA library and identified small carboxyl-terminal domain phosphatase 2 (SCP2). SCP2 is a protein phosphatase that directly interacts with the AR NTD and represses AR activity. We demonstrated that reducing the endogenous cellular levels of SCP2 causes more AR to load on to the prostate specific antigen (PSA) gene promoter and enhancer regions. Additionally, under the same conditions, more RNA polymerase II was recruited to the PSA promoter region and overall there was an increase in androgen-dependent transcription of the PSA gene, revealing that SCP2 could play a role in the pathogenesis of CaP.