7 resultados para Biology, Molecular|Biology, Genetics

em Helda - Digital Repository of University of Helsinki


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an autosomal recessively inherited disorder characterized by age of onset at 6-15 years, stimulus-sensitive myoclonus, tonic-clonic epileptic seizures and a progressive course. Mutations in the cystatin B (CSTB) gene underlie EPM1. The most common mutation underlying EPM1 is a dodecamer repeat expansion in the promoter region of CSTB. In addition, nine other mutations have been identified. CSTB, a cysteine protease inhibitor, is a ubiquitously expressed inhibitor of cathepsins, but its physiological function is unknown. The purpose of this study was to investigate CSTB gene expression and CSTB protein function in normal and pathological conditions. The basal CSTB promoter was mapped and characterized using different promoter-luciferase gene constructs. The binding activity of transcription factors to one ARE half, five Sp1 and four AP1 sites in the CSTB promoter was demonstrated. The CSTB promoter activity was clearly decreased using a CSTB promoter with "premutation" repeat expansions and in individuals with alike expansions. The expression of CSTB mRNA and protein was markedly reduced in patient cells. The endogenous CSTB protein localized to the nucleus, cytoplasm and lysosomes, and in differentiated cells merely to the cytoplasm. This suggests that the subcellular distribution of CSTB is dependent on the differentation status of the cells. The proteins representing patient missense mutations failed to associate with lysosomes, implying the importance of the lysosomal association for the proper physiological function of CSTB. Several alternatively spliced CSTB isoforms were identified. Of these CSTB2 was widely expressed with very low levels whereas the other alternatively spliced forms seemed to have limited tissue expression. In patients CSTB2 expression was reduced similarly to that of CSTB. The physiological relevance of CSTB alternative splicing remains unknown. The mouse Cstb transcript was shown to be present in all embryonic stages and adult tissues examined. The expression was highest at embryonic day 7 and in thymus, as well as in postnatal brain in the cortex, caudate putamen, thalamus, hippocampus, and in the Purkinje cell layer of the cerebellum. Our data implies that CSTB expression is tightly temporally and spatially regulated. The data presented in my thesis lay the basis for further understanding of the role of CSTB in health and disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epilysin (MMP-28) is the most recently identified member of the matrix metalloproteinase (MMP) family of extracellular proteases. Together these enzymes are capable of degrading almost all components of the extracellular matrix (ECM) and are thus involved in important biological processes such as development, wound healing and immune functions, but also in pathological processes such as tumor invasion, metastasis and arthritis. MMPs do not act solely by degrading the ECM. They also regulate cell behavior by releasing growth factors and biologically active peptides from the ECM, by modulating cell surface receptors and adhesion molecules and by regulating the activity of many important mediators in inflammatory pathways. The aim of this study was to define the unique role of epilysin within the MMP-family, to elucidate how and when it is expressed and how its catalytic activity is regulated. To gain information on its essential functions and substrates, the specific aim was to characterize how epilysin affects the phenotype of epithelial cells, where it is biologically expressed. During the course of the study we found that the epilysin promoter contains a well conserved GT-box that is essential for the basic expression of this gene. Transcription factors Sp1 and Sp3 bind this sequence and could hence regulate both the basic and cell type and differentiation stage specific expression of epilysin. We cloned mouse epilysin cDNA and found that epilysin is well conserved between human and mouse genomes and that epilysin is glycosylated and activated by furin. Similarly to in human tissues, epilysin is normally expressed in a number of mouse tissues. The expression pattern differs from most other MMPs, which are expressed only in response to injury or inflammation and in pathological processes like cancer. These findings implicate that epilysin could be involved in tissue homeostasis, perhaps fine-tuning the phenotype of epithelial cells according to signals from the ECM. In view of these results, it was unexpected to find that epilysin can induce a stable epithelial to mesenchymal transition (EMT) when overexpressed in epithelial lung carcinoma cells. Transforming growth factor b (TGF-b) was recognized as a crucial mediator of this process, which was characterized by the loss of E-cadherin mediated cell-cell adhesion, elevated expression of gelatinase B and MT1-MMP and increased cell migration and invasion into collagen I gels. We also observed that epilysin is bound to the surface of epithelial cells and that this interaction is lost upon cell transformation and is susceptible to degradation by membrane type-1-MMP (MT1-MMP). The wide expression of epilysin under physiological conditions implicates that its effects on epithelial cell phenotype in vivo are not as dramatic as seen in our in vitro cell system. Nevertheless, current results indicate a possible interaction between epilysin and TGF-b also under physiological circumstances, where epilysin activity may not induce EMT but, instead, trigger less permanent changes in TGF-b signaling and cell motility. Epilysin may thus play an important role in TGF-b regulated events such as wound healing and inflammation, processes where involvement of epilysin has been indicated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Germ cell tumors occur both in the gonads of both sexes and in extra-gonadal sites during adoles-cence and early adulthood. Malignant ovarian germ cell tumors are rare neoplasms accounting for less than 5% of all cases of ovarian malignancy. In contrast, testicular cancer is the most common malignancy among young males. Most of patients survive the disease. Prognostic factors of gonadal germ cell tumors include histology, clinical stage, size of the primary tumor and residua, and levels of tumor markers. Germ cell tumors include heterogeneous histological subgroups. The most common subgroup includes germinomas (ovarian dysgerminoma and testicular seminoma); other subgroups are yolk sac tumors, embryonal carcinomas, immature teratomas and mixed tumors. The origin of germ cell tumors is most likely primordial germ cells. Factors behind germ cell tumor development and differentiation are still poorly known. The purpose of this study was to define novel diagnostic and prognostic factors for malignant gonadal germ cell tumors. In addition, the aim was to shed further light into the molecular mechanisms regulating gonadal germ cell tumorigenesis and differentiation by studying the roles of GATA transcription factors, pluripotent factors Oct-3/4 and AP-2γ, and estrogen receptors. This study revealed the prognostic value of CA-125 in malignant ovarian germ cell tumors. In addition advanced age and residual tumor had more adverse outcome. Several novel markers for histological diagnosis were defined. In the fetal development transcription factor GATA-4 was expressed in early fetal gonocytes and in testicular carcinoma precursor cells. In addition, GATA-4 was expressed in both gonadal germinomas, thus it may play a role in the development and differentiation of the germinoma tumor subtype. Pluripotent factors Oct-3/4 and AP-2γ were expressed in dysgerminomas, thus they could be used in the differential diagnosis of the germ cell tumors. Malignant ovarian germ cell tumors expressed estrogen receptors and their co-regulator SNURF. In addition, estrogen receptor expression was up-regulated by estradiol stimulation. Thus, gonadal steroid hormone burst in puberty may play a role in germ cell tumor development in the ovary. This study shed further light in to the molecular pathology of malignant gonadal germ cell tumors. In addition, some novel diagnostic and prognostic factors were defined. This data may be used in the differential diagnosis of germ cell tumor patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Scattering of X-rays and neutrons has been applied to the study of nanostructures with interesting biological functions. The systems studied were the protein calmodulin and its complexes, bacterial virus bacteriophage phi6, and the photosynthetic antenna complex from green sulfur bacteria, chlorosome. Information gathered using various structure determination methods has been combined to the low resolution information obtained from solution scattering. Conformational changes in calmodulin-ligand complex were studied by combining the directional information obtained from residual dipole couplings in nuclear magnetic resonance to the size information obtained from small-angle X-ray scattering from solution. The locations of non-structural protein components in a model of bacteriophage phi6, based mainly on electron microscopy, were determined by neutron scattering, deuterium labeling and contrast variation. New data are presented on the structure of the photosynthetic antenna complex of green sulfur bacteria and filamentous anoxygenic phototrophs, also known as the chlorosome. The X-ray scattering and electron cryomicroscopy results from this system are interpreted in the context of a new structural model detailed in the third paper of this dissertation. The model is found to be consistent with the results obtained from various chlorosome containing bacteria. The effect of carotenoid synthesis on the chlorosome structure and self-assembly are studied by carotenoid extraction, biosynthesis inhibition and genetic manipulation of the enzymes involved in carotenoid biosynthesis. Carotenoid composition and content are found to have a marked effect on the structural parameters and morphology of chlorosomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently it has been recognized that evolutionary aspects play a major role in conservation issues of a species. In this thesis I have combined evolutionary research with conservation studies to provide new insight into these fields. The study object of this thesis is the house sparrow, a species that has features that makes it interesting for this type of study. The house sparrow has been ubiquitous almost all over the world. Even though being still abundant, several countries have reported major declines. These declines have taken place in a relatively short time covering both urban and rural habitats. In Finland this species has declined by more than two thirds in just over two decades. In addition, as the house sparrow lives only in human inhabited areas it can also raise public awareness to conservation issues. I used both an extensive museum collection of house sparrows collected in 1980s from all over Finland as well as samples collected in 2009 from 12 of the previously collected localities. I used molecular techniques to study neutral genetic variation within and genetic differentiation between the study populations. This knowledge I then combined with data gathered on morphometric measurements. In addition I analyzed eight heavy metals from the livers of house sparrows that lived in either rural or urban areas in the 1980s and evaluated the role of heavy metal pollution as a possible cause of the declines. Even though dispersal of house sparrows is limited I found that just as the declines started in 1980s the house sparrows formed a genetically panmictic population on the scale of the whole Finland. When compared to Norway, where neutral genetic divergence has been found even with small geographic distances, I concluded that this difference would be due to contrasting landscapes. In Finland the landscape is rather homogeneous facilitating the movements of these birds and maintaining gene flow even with the low dispersal. To see whether the declines have had an effect on the neutral genetic variation of the populations I did a comparison between the historical and contemporary genetic data. I showed that even though genetic diversity has not decreased due to the drastic declines the populations have indeed become more differentiated from each other. This shows that even in a still quite abundant species the declines can have an effect on the genetic variation. It is shown that genetic diversity and differentiation may approach their new equilibriums at different rates. This emphasizes the importance of studying both of them and if the latter has increased it should be taken as a warning sign of a possible loss of genetic diversity in the future. One of the factors suggested to be responsible for the house sparrow declines is heavy metal pollution. When studying the livers of house sparrows from 1980s I discovered higher levels of heavy metal concentrations in urban than rural habitats, but the levels of the metals were comparatively low and based on that heavy metal pollution does not seem to be a direct cause for the declines in Finland. However, heavy metals are known to decrease the amount of insects in urban areas and thus in the cities heavy metals may have an indirect effect on house sparrows. Although neutral genetic variation is an important tool for conservation genetics it does not tell the whole story. Since neutral genetic variation is not affected by selection, information can be one-sided. It is possible that even neutral genetic differentiation is low, there can be substantial variation in additive genetic traits indicating local adaptation. Therefore I performed a comparison between neutral genetic differentiation and phenotypic differentiation. I discovered that two traits out of seven are likely to be under directional selection, whereas the others could be affected by random genetic drift. Bergmann s rule may be behind the observed directional selection in wing length and body mass. These results highlight the importance of estimating both neutral and adaptive genetic variation.