20 resultados para Bayesian statistical decision theory

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacteria play an important role in many ecological systems. The molecular characterization of bacteria using either cultivation-dependent or cultivation-independent methods reveals the large scale of bacterial diversity in natural communities, and the vastness of subpopulations within a species or genus. Understanding how bacterial diversity varies across different environments and also within populations should provide insights into many important questions of bacterial evolution and population dynamics. This thesis presents novel statistical methods for analyzing bacterial diversity using widely employed molecular fingerprinting techniques. The first objective of this thesis was to develop Bayesian clustering models to identify bacterial population structures. Bacterial isolates were identified using multilous sequence typing (MLST), and Bayesian clustering models were used to explore the evolutionary relationships among isolates. Our method involves the inference of genetic population structures via an unsupervised clustering framework where the dependence between loci is represented using graphical models. The population dynamics that generate such a population stratification were investigated using a stochastic model, in which homologous recombination between subpopulations can be quantified within a gene flow network. The second part of the thesis focuses on cluster analysis of community compositional data produced by two different cultivation-independent analyses: terminal restriction fragment length polymorphism (T-RFLP) analysis, and fatty acid methyl ester (FAME) analysis. The cluster analysis aims to group bacterial communities that are similar in composition, which is an important step for understanding the overall influences of environmental and ecological perturbations on bacterial diversity. A common feature of T-RFLP and FAME data is zero-inflation, which indicates that the observation of a zero value is much more frequent than would be expected, for example, from a Poisson distribution in the discrete case, or a Gaussian distribution in the continuous case. We provided two strategies for modeling zero-inflation in the clustering framework, which were validated by both synthetic and empirical complex data sets. We show in the thesis that our model that takes into account dependencies between loci in MLST data can produce better clustering results than those methods which assume independent loci. Furthermore, computer algorithms that are efficient in analyzing large scale data were adopted for meeting the increasing computational need. Our method that detects homologous recombination in subpopulations may provide a theoretical criterion for defining bacterial species. The clustering of bacterial community data include T-RFLP and FAME provides an initial effort for discovering the evolutionary dynamics that structure and maintain bacterial diversity in the natural environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Thesis, we develop theory and methods for computational data analysis. The problems in data analysis are approached from three perspectives: statistical learning theory, the Bayesian framework, and the information-theoretic minimum description length (MDL) principle. Contributions in statistical learning theory address the possibility of generalization to unseen cases, and regression analysis with partially observed data with an application to mobile device positioning. In the second part of the Thesis, we discuss so called Bayesian network classifiers, and show that they are closely related to logistic regression models. In the final part, we apply the MDL principle to tracing the history of old manuscripts, and to noise reduction in digital signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In genetic epidemiology, population-based disease registries are commonly used to collect genotype or other risk factor information concerning affected subjects and their relatives. This work presents two new approaches for the statistical inference of ascertained data: a conditional and full likelihood approaches for the disease with variable age at onset phenotype using familial data obtained from population-based registry of incident cases. The aim is to obtain statistically reliable estimates of the general population parameters. The statistical analysis of familial data with variable age at onset becomes more complicated when some of the study subjects are non-susceptible, that is to say these subjects never get the disease. A statistical model for a variable age at onset with long-term survivors is proposed for studies of familial aggregation, using latent variable approach, as well as for prospective studies of genetic association studies with candidate genes. In addition, we explore the possibility of a genetic explanation of the observed increase in the incidence of Type 1 diabetes (T1D) in Finland in recent decades and the hypothesis of non-Mendelian transmission of T1D associated genes. Both classical and Bayesian statistical inference were used in the modelling and estimation. Despite the fact that this work contains five studies with different statistical models, they all concern data obtained from nationwide registries of T1D and genetics of T1D. In the analyses of T1D data, non-Mendelian transmission of T1D susceptibility alleles was not observed. In addition, non-Mendelian transmission of T1D susceptibility genes did not make a plausible explanation for the increase in T1D incidence in Finland. Instead, the Human Leucocyte Antigen associations with T1D were confirmed in the population-based analysis, which combines T1D registry information, reference sample of healthy subjects and birth cohort information of the Finnish population. Finally, a substantial familial variation in the susceptibility of T1D nephropathy was observed. The presented studies show the benefits of sophisticated statistical modelling to explore risk factors for complex diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advancements in the analysis techniques have led to a rapid accumulation of biological data in databases. Such data often are in the form of sequences of observations, examples including DNA sequences and amino acid sequences of proteins. The scale and quality of the data give promises of answering various biologically relevant questions in more detail than what has been possible before. For example, one may wish to identify areas in an amino acid sequence, which are important for the function of the corresponding protein, or investigate how characteristics on the level of DNA sequence affect the adaptation of a bacterial species to its environment. Many of the interesting questions are intimately associated with the understanding of the evolutionary relationships among the items under consideration. The aim of this work is to develop novel statistical models and computational techniques to meet with the challenge of deriving meaning from the increasing amounts of data. Our main concern is on modeling the evolutionary relationships based on the observed molecular data. We operate within a Bayesian statistical framework, which allows a probabilistic quantification of the uncertainties related to a particular solution. As the basis of our modeling approach we utilize a partition model, which is used to describe the structure of data by appropriately dividing the data items into clusters of related items. Generalizations and modifications of the partition model are developed and applied to various problems. Large-scale data sets provide also a computational challenge. The models used to describe the data must be realistic enough to capture the essential features of the current modeling task but, at the same time, simple enough to make it possible to carry out the inference in practice. The partition model fulfills these two requirements. The problem-specific features can be taken into account by modifying the prior probability distributions of the model parameters. The computational efficiency stems from the ability to integrate out the parameters of the partition model analytically, which enables the use of efficient stochastic search algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Baltic Sea is a geologically young, large brackish water basin, and few of the species living there have fully adapted to its special conditions. Many of the species live on the edge of their distribution range in terms of one or more environmental variables such as salinity or temperature. Environmental fluctuations are know to cause fluctuations in populations abundance, and this effect is especially strong near the edges of the distribution range, where even small changes in an environmental variable can be critical to the success of a species. This thesis examines which environmental factors are the most important in relation to the success of various commercially exploited fish species in the northern Baltic Sea. It also examines the uncertainties related to fish stocks current and potential status as well as to their relationship with their environment. The aim is to quantify the uncertainties related to fisheries and environmental management, to find potential management strategies that can be used to reduce uncertainty in management results and to develop methodology related to uncertainty estimation in natural resources management. Bayesian statistical methods are utilized due to their ability to treat uncertainty explicitly in all parts of the statistical model. The results show that uncertainty about important parameters of even the most intensively studied fish species such as salmon (Salmo salar L.) and Baltic herring (Clupea harengus membras L.) is large. On the other hand, management approaches that reduce uncertainty can be found. These include utilising information about ecological similarity of fish stocks and species, and using management variables that are directly related to stock parameters that can be measured easily and without extrapolations or assumptions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this research is to draw up a clear construction of an anticipatory communicative decision-making process and a successful implementation of a Bayesian application that can be used as an anticipatory communicative decision-making support system. This study is a decision-oriented and constructive research project, and it includes examples of simulated situations. As a basis for further methodological discussion about different approaches to management research, in this research, a decision-oriented approach is used, which is based on mathematics and logic, and it is intended to develop problem solving methods. The approach is theoretical and characteristic of normative management science research. Also, the approach of this study is constructive. An essential part of the constructive approach is to tie the problem to its solution with theoretical knowledge. Firstly, the basic definitions and behaviours of an anticipatory management and managerial communication are provided. These descriptions include discussions of the research environment and formed management processes. These issues define and explain the background to further research. Secondly, it is processed to managerial communication and anticipatory decision-making based on preparation, problem solution, and solution search, which are also related to risk management analysis. After that, a solution to the decision-making support application is formed, using four different Bayesian methods, as follows: the Bayesian network, the influence diagram, the qualitative probabilistic network, and the time critical dynamic network. The purpose of the discussion is not to discuss different theories but to explain the theories which are being implemented. Finally, an application of Bayesian networks to the research problem is presented. The usefulness of the prepared model in examining a problem and the represented results of research is shown. The theoretical contribution includes definitions and a model of anticipatory decision-making. The main theoretical contribution of this study has been to develop a process for anticipatory decision-making that includes management with communication, problem-solving, and the improvement of knowledge. The practical contribution includes a Bayesian Decision Support Model, which is based on Bayesian influenced diagrams. The main contributions of this research are two developed processes, one for anticipatory decision-making, and the other to produce a model of a Bayesian network for anticipatory decision-making. In summary, this research contributes to decision-making support by being one of the few publicly available academic descriptions of the anticipatory decision support system, by representing a Bayesian model that is grounded on firm theoretical discussion, by publishing algorithms suitable for decision-making support, and by defining the idea of anticipatory decision-making for a parallel version. Finally, according to the results of research, an analysis of anticipatory management for planned decision-making is presented, which is based on observation of environment, analysis of weak signals, and alternatives to creative problem solving and communication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dissertation examines Roman provincial administration and the phenomenon of territorial reorganisations of provinces during the Imperial period with special emphasis on the provinces of Arabia and Palaestina during the Later Roman period, i.e., from Diocletian (r. 284 305) to the accession of Phocas (602), in the light of imperial decision-making. Provinces were the basic unit of Roman rule, for centuries the only level of administration that existed between the emperor and the cities of the Empire. The significance of the territorial reorganisations that the provinces were subjected to during the Imperial period is thus of special interest. The approach to the phenomenon is threefold: firstly, attention is paid to the nature and constraints of the Roman system of provincial administration. Secondly, the phenomenon of territorial reorganisations is analysed on the macro-scale, and thirdly, a case study concerning the reorganisations of the provinces of Arabia and Palaestina is conducted. The study of the mechanisms of decision-making provides a foundation through which the collected data of all known major territorial reorganisations is interpreted. The data concerning reorganisations is also subjected to qualitative comparative analysis that provides a new perspective to the data in the form of statistical analysis that is sensitive to the complexities of individual cases. This analysis of imperial decision-making is based on a timeframe stretching from Augustus (r. 30 BC AD 14) to the accession of Phocas (602). The study identifies five distinct phases in the use of territorial reorganisations of the provinces. From Diocletian s reign there is a clear normative change that made territorial reorganisations a regular tool of administration for the decision-making elite for addressing a wide variety of qualitatively different concerns. From the beginning of the fifth century the use of territorial reorganisations rapidly diminishes. The two primary reasons for the decline in the use of reorganisations were the solidification of ecclesiastical power and interests connected to the extent of provinces, and the decline of the dioceses. The case study of Palaestina and Arabia identifies seven different territorial reorganisations from Diocletian to Phocas. Their existence not only testifies to wider imperial policies, but also shows sensitivity to local conditions and corresponds with the general picture of provincial reorganisations. The territorial reorganisations of the provinces reflect the proactive control of the Roman decision-making elite. The importance of reorganisations should be recognised more clearly as part of the normal imperial administration of the provinces and especially reflecting the functioning of dioceses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study I discuss G. W. Leibniz's (1646-1716) views on rational decision-making from the standpoint of both God and man. The Divine decision takes place within creation, as God freely chooses the best from an infinite number of possible worlds. While God's choice is based on absolutely certain knowledge, human decisions on practical matters are mostly based on uncertain knowledge. However, in many respects they could be regarded as analogous in more complicated situations. In addition to giving an overview of the divine decision-making and discussing critically the criteria God favours in his choice, I provide an account of Leibniz's views on human deliberation, which includes some new ideas. One of these concerns is the importance of estimating probabilities in making decisions one estimates both the goodness of the act itself and its consequences as far as the desired good is concerned. Another idea is related to the plurality of goods in complicated decisions and the competition this may provoke. Thirdly, heuristic models are used to sketch situations under deliberation in order to help in making the decision. Combining the views of Marcelo Dascal, Jaakko Hintikka and Simo Knuuttila, I argue that Leibniz applied two kinds of models of rational decision-making to practical controversies, often without explicating the details. The more simple, traditional pair of scales model is best suited to cases in which one has to decide for or against some option, or to distribute goods among parties and strive for a compromise. What may be of more help in more complicated deliberations is the novel vectorial model, which is an instance of the general mathematical doctrine of the calculus of variations. To illustrate this distinction, I discuss some cases in which he apparently applied these models in different kinds of situation. These examples support the view that the models had a systematic value in his theory of practical rationality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whether a statistician wants to complement a probability model for observed data with a prior distribution and carry out fully probabilistic inference, or base the inference only on the likelihood function, may be a fundamental question in theory, but in practice it may well be of less importance if the likelihood contains much more information than the prior. Maximum likelihood inference can be justified as a Gaussian approximation at the posterior mode, using flat priors. However, in situations where parametric assumptions in standard statistical models would be too rigid, more flexible model formulation, combined with fully probabilistic inference, can be achieved using hierarchical Bayesian parametrization. This work includes five articles, all of which apply probability modeling under various problems involving incomplete observation. Three of the papers apply maximum likelihood estimation and two of them hierarchical Bayesian modeling. Because maximum likelihood may be presented as a special case of Bayesian inference, but not the other way round, in the introductory part of this work we present a framework for probability-based inference using only Bayesian concepts. We also re-derive some results presented in the original articles using the toolbox equipped herein, to show that they are also justifiable under this more general framework. Here the assumption of exchangeability and de Finetti's representation theorem are applied repeatedly for justifying the use of standard parametric probability models with conditionally independent likelihood contributions. It is argued that this same reasoning can be applied also under sampling from a finite population. The main emphasis here is in probability-based inference under incomplete observation due to study design. This is illustrated using a generic two-phase cohort sampling design as an example. The alternative approaches presented for analysis of such a design are full likelihood, which utilizes all observed information, and conditional likelihood, which is restricted to a completely observed set, conditioning on the rule that generated that set. Conditional likelihood inference is also applied for a joint analysis of prevalence and incidence data, a situation subject to both left censoring and left truncation. Other topics covered are model uncertainty and causal inference using posterior predictive distributions. We formulate a non-parametric monotonic regression model for one or more covariates and a Bayesian estimation procedure, and apply the model in the context of optimal sequential treatment regimes, demonstrating that inference based on posterior predictive distributions is feasible also in this case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis consists of an introduction, four research articles and an appendix. The thesis studies relations between two different approaches to continuum limit of models of two dimensional statistical mechanics at criticality. The approach of conformal field theory (CFT) could be thought of as the algebraic classification of some basic objects in these models. It has been succesfully used by physicists since 1980's. The other approach, Schramm-Loewner evolutions (SLEs), is a recently introduced set of mathematical methods to study random curves or interfaces occurring in the continuum limit of the models. The first and second included articles argue on basis of statistical mechanics what would be a plausible relation between SLEs and conformal field theory. The first article studies multiple SLEs, several random curves simultaneously in a domain. The proposed definition is compatible with a natural commutation requirement suggested by Dubédat. The curves of multiple SLE may form different topological configurations, ``pure geometries''. We conjecture a relation between the topological configurations and CFT concepts of conformal blocks and operator product expansions. Example applications of multiple SLEs include crossing probabilities for percolation and Ising model. The second article studies SLE variants that represent models with boundary conditions implemented by primary fields. The most well known of these, SLE(kappa, rho), is shown to be simple in terms of the Coulomb gas formalism of CFT. In the third article the space of local martingales for variants of SLE is shown to carry a representation of Virasoro algebra. Finding this structure is guided by the relation of SLEs and CFTs in general, but the result is established in a straightforward fashion. This article, too, emphasizes multiple SLEs and proposes a possible way of treating pure geometries in terms of Coulomb gas. The fourth article states results of applications of the Virasoro structure to the open questions of SLE reversibility and duality. Proofs of the stated results are provided in the appendix. The objective is an indirect computation of certain polynomial expected values. Provided that these expected values exist, in generic cases they are shown to possess the desired properties, thus giving support for both reversibility and duality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis the use of the Bayesian approach to statistical inference in fisheries stock assessment is studied. The work was conducted in collaboration of the Finnish Game and Fisheries Research Institute by using the problem of monitoring and prediction of the juvenile salmon population in the River Tornionjoki as an example application. The River Tornionjoki is the largest salmon river flowing into the Baltic Sea. This thesis tackles the issues of model formulation and model checking as well as computational problems related to Bayesian modelling in the context of fisheries stock assessment. Each article of the thesis provides a novel method either for extracting information from data obtained via a particular type of sampling system or for integrating the information about the fish stock from multiple sources in terms of a population dynamics model. Mark-recapture and removal sampling schemes and a random catch sampling method are covered for the estimation of the population size. In addition, a method for estimating the stock composition of a salmon catch based on DNA samples is also presented. For most of the articles, Markov chain Monte Carlo (MCMC) simulation has been used as a tool to approximate the posterior distribution. Problems arising from the sampling method are also briefly discussed and potential solutions for these problems are proposed. Special emphasis in the discussion is given to the philosophical foundation of the Bayesian approach in the context of fisheries stock assessment. It is argued that the role of subjective prior knowledge needed in practically all parts of a Bayesian model should be recognized and consequently fully utilised in the process of model formulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetics, the science of heredity and variation in living organisms, has a central role in medicine, in breeding crops and livestock, and in studying fundamental topics of biological sciences such as evolution and cell functioning. Currently the field of genetics is under a rapid development because of the recent advances in technologies by which molecular data can be obtained from living organisms. In order that most information from such data can be extracted, the analyses need to be carried out using statistical models that are tailored to take account of the particular genetic processes. In this thesis we formulate and analyze Bayesian models for genetic marker data of contemporary individuals. The major focus is on the modeling of the unobserved recent ancestry of the sampled individuals (say, for tens of generations or so), which is carried out by using explicit probabilistic reconstructions of the pedigree structures accompanied by the gene flows at the marker loci. For such a recent history, the recombination process is the major genetic force that shapes the genomes of the individuals, and it is included in the model by assuming that the recombination fractions between the adjacent markers are known. The posterior distribution of the unobserved history of the individuals is studied conditionally on the observed marker data by using a Markov chain Monte Carlo algorithm (MCMC). The example analyses consider estimation of the population structure, relatedness structure (both at the level of whole genomes as well as at each marker separately), and haplotype configurations. For situations where the pedigree structure is partially known, an algorithm to create an initial state for the MCMC algorithm is given. Furthermore, the thesis includes an extension of the model for the recent genetic history to situations where also a quantitative phenotype has been measured from the contemporary individuals. In that case the goal is to identify positions on the genome that affect the observed phenotypic values. This task is carried out within the Bayesian framework, where the number and the relative effects of the quantitative trait loci are treated as random variables whose posterior distribution is studied conditionally on the observed genetic and phenotypic data. In addition, the thesis contains an extension of a widely-used haplotyping method, the PHASE algorithm, to settings where genetic material from several individuals has been pooled together, and the allele frequencies of each pool are determined in a single genotyping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient and statistically robust solution for the identification of asteroids among numerous sets of astrometry is presented. In particular, numerical methods have been developed for the short-term identification of asteroids at discovery, and for the long-term identification of scarcely observed asteroids over apparitions, a task which has been lacking a robust method until now. The methods are based on the solid foundation of statistical orbital inversion properly taking into account the observational uncertainties, which allows for the detection of practically all correct identifications. Through the use of dimensionality-reduction techniques and efficient data structures, the exact methods have a loglinear, that is, O(nlog(n)), computational complexity, where n is the number of included observation sets. The methods developed are thus suitable for future large-scale surveys which anticipate a substantial increase in the astrometric data rate. Due to the discontinuous nature of asteroid astrometry, separate sets of astrometry must be linked to a common asteroid from the very first discovery detections onwards. The reason for the discontinuity in the observed positions is the rotation of the observer with the Earth as well as the motion of the asteroid and the observer about the Sun. Therefore, the aim of identification is to find a set of orbital elements that reproduce the observed positions with residuals similar to the inevitable observational uncertainty. Unless the astrometric observation sets are linked, the corresponding asteroid is eventually lost as the uncertainty of the predicted positions grows too large to allow successful follow-up. Whereas the presented identification theory and the numerical comparison algorithm are generally applicable, that is, also in fields other than astronomy (e.g., in the identification of space debris), the numerical methods developed for asteroid identification can immediately be applied to all objects on heliocentric orbits with negligible effects due to non-gravitational forces in the time frame of the analysis. The methods developed have been successfully applied to various identification problems. Simulations have shown that the methods developed are able to find virtually all correct linkages despite challenges such as numerous scarce observation sets, astrometric uncertainty, numerous objects confined to a limited region on the celestial sphere, long linking intervals, and substantial parallaxes. Tens of previously unknown main-belt asteroids have been identified with the short-term method in a preliminary study to locate asteroids among numerous unidentified sets of single-night astrometry of moving objects, and scarce astrometry obtained nearly simultaneously with Earth-based and space-based telescopes has been successfully linked despite a substantial parallax. Using the long-term method, thousands of realistic 3-linkages typically spanning several apparitions have so far been found among designated observation sets each spanning less than 48 hours.