2 resultados para Short chain fatty acids

em Glasgow Theses Service


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been proposed that long-term consumption of diets rich in non-digestible carbohydrates (NDCs), such as cereals, fruit and vegetables might protect against several chronic diseases, however, it has been difficult to fully establish their impact on health in epidemiology studies. The wide range properties of the different NDCs may dilution their impact when they are combined in one category for statistical comparisons in correlations or multivariate analysis. Several mechanisms have been suggested to explain the protective effects of NDCs, including increased stool bulk, dilution of carcinogens in the colonic lumen, reduced transit time, lowering pH, and bacterial fermentation to short chain fatty acids (SCFA) in the colon. However, it is very difficult to measure SCFA in humans in vivo with any accuracy, so epidemiological studies on the impact of SCFA are not feasible. Most studies use dietary fibre (DF) or Non-Starch Polysaccharides (NSP) intake to estimate the levels, but not all fibres or NSP are equally fermentable. It has been proposed that long-term consumption of diets rich in non-digestible carbohydrates (NDCs), such as cereals, fruit and vegetables might protect against several chronic diseases, however, it has been difficult to fully establish their impact on health in epidemiology studies. The wide range properties of the different NDCs may dilution their impact when they are combined in one category for statistical comparisons in correlations or multivariate analysis. Several mechanisms have been suggested to explain the protective effects of NDCs, including increased stool bulk, dilution of carcinogens in the colonic lumen, reduced transit time, lowering pH, and bacterial fermentation to short chain fatty acids (SCFA) in the colon. However, it is very difficult to measure SCFA in humans in vivo with any accuracy, so epidemiological studies on the impact of SCFA are not feasible. Most studies use dietary fibre (DF) or Non-Starch Polysaccharides (NSP) intake to estimate the levels, but not all fibres or NSP are equally fermentable. The first aim of this thesis was the development of the equations used to estimate the amount of FC that reaches the human colon and is fermented fully to SCFA by the colonic bacteria. Therefore, several studies were examined for evidence to determine the different percentages of each type of NDCs that should be included in the final model, based on how much NDCs entered the colon intact and also to what extent they were fermented to SCFA in vivo. Our model equations are FC-DF or NSP$ 1: 100 % Soluble + 10 % insoluble + 100 % NDOs¥ + 5 % TS** FC-DF or NSP 2: 100 % Soluble + 50 % insoluble + 100 % NDOs + 5 % TS FC-DF* or NSP 3: 100 % Soluble + 10 % insoluble + 100 % NDOs + 10 % TS FC-DF or NSP 4: 100 % Soluble + 50 % insoluble + 100 % NDOs + 10 % TS *DF: Dietary fibre; **TS: Total starch; $NSP: non-starch polysaccharide; ¥NDOs: non-digestible oligosaccharide The second study of this thesis aimed to examine all four predicted FC-DF and FC-NSP equations developed, to estimate FC from dietary records against urinary colonic NDCs fermentation biomarkers. The main finding of a cross-sectional comparison of habitual diet with urinary excretion of SCFA products, showed weak but significant correlation between the 24 h urinary excretion of SCFA and acetate with the estimated FC-DF 4 and FC-NSP 4 when considering all of the study participants (n = 122). Similar correlations were observed with the data for valid participants (n = 78). It was also observed that FC-DF and FC-NSP had positive correlations with 24 h urinary acetate and SCFA compared with DF and NSP alone. Hence, it could be hypothesised that using the developed index to estimate FC in the diet form dietary records, might predict SCFA production in the colon in vivo in humans. The next study in this thesis aimed to validate the FC equations developed using in vitro models of small intestinal digestion and human colon fermentation. The main findings in these in vitro studies were that there were several strong agreements between the amounts of SCFA produced after actual in vitro fermentation of single fibre and different mixtures of NDCs, and those predicted by the estimated FC from our developed equation FC-DF 4. These results which demonstrated a strong relationship between SCFA production in vitro from a range of fermentations of single fibres and mixtures of NDCs and that from the predicted FC equation, support the use of the FC equation for estimation of FC from dietary records. Therefore, we can conclude that the newly developed predicted equations have been deemed a valid and practical tool to assess SCFA productions for in vitro fermentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Short chain fatty acids (SCFA), including propionate, are produced by the bacterial fermentation of carbohydrates in the colon. Propionate has many potential roles in health, including inhibiting cholesterol synthesis, de novo lipogenesis and increasing satiety. The profile of SCFA produced is determined by both the substrate available and the bacteria present and may be influenced by environmental conditions within the lumen of the colon. Whilst it may be beneficial to increase colonic propionate production, dietary strategies to achieve this are unproven. Adding propionate to food leads to poorer organoleptic properties, and oral propionate is absorbed in the small intestine. The optimum way to selectively increase colonic propionate would be to select fermentable carbohydrates that selectively promote propionate production. To date, few studies have undertaken a systematic assessment of the factors leading to increased colonic propionate production making the selection of propiogenic carbohydrates challenging. The aim of this thesis was to identify the best carbohydrates for selectively increasing propionate production, and to explore the factors which control propionate production. This work started with a systematic review of the literature for evidence of candidate carbohydrates, which led to a screen of ‘propiogenic’ substrates using in vitro batch fermentations and mechanistic analysis of the impact of pH, bond linkage and orientation using a range of sugars, polysaccharides and fibre sources. A new unit for SCFA production was developed to allow comparison of results from in vitro studies encompassing a range different methodologies found in the literature. The systematic review found that rhamnose yielded the highest rate and proportion of propionate production whereas, for polysaccharides, β-glucan ranked highest for rate and guar gum ranked highest for molar production, but this was not replicated across all studies. Thus, no single NDC was established as highly propiogenic. Some substrates appeared more propiogenic than others and when these were screened in vitro. Laminarin, and other β-glucans ranked highest for propionate production. Legume fibre and mycoprotein fibre were also propiogenic. A full complement of glucose disaccharides were tested to examine the role glycosidic bond orientation and position on propionate production. Of the glucose disaccharides tested, β(1-4) bonding was associated with increased proportion of propionate and α(1-1) and β(1-4) increased the rate and proportion of butyrate production. In conclusion, it appears that for fibre to affect satiety, high intakes of fibre are needed, and which a major mechanism is thought to occur via propionate. Within this thesis it was identified that rather than selecting specific fibres, increasing overall intakes of highly fermentable carbohydrates is as effective at increasing propionate production. Selecting carbohydrates with beta-bonding, particularly laminarin and other β(1-4) fermentable carbohydrates leads to marginal increases in propionate production. Compared with targeted delivery of propionate to the colon, fermentable carbohydrates examined in this thesis have lesser and variable effects on propionate production. A more complete understanding of the impact of bond configurations in polysaccharides, rather than disaccharides, may help selection or design of dietary carbohydrates which selectively promote colonic propionate production substrates for inclusion in functional foods. Overall this study has concluded that few substrates are selectively propiogenic and the evidence suggests that similar changes in propionate production may be achieved by modest changes in dietary fibre intake