12 resultados para Human genome - Theses
em Glasgow Theses Service
Epidemiology and genetic architecture of blood pressure: a family based study of Generation Scotland
Resumo:
Hypertension is a major risk factor for cardiovascular disease and mortality, and a growing global public health concern, with up to one-third of the world’s population affected. Despite the vast amount of evidence for the benefits of blood pressure (BP) lowering accumulated to date, elevated BP is still the leading risk factor for disease and disability worldwide. It is well established that hypertension and BP are common complex traits, where multiple genetic and environmental factors contribute to BP variation. Furthermore, family and twin studies confirmed the genetic component of BP, with a heritability estimate in the range of 30-50%. Contemporary genomic tools enabling the genotyping of millions of genetic variants across the human genome in an efficient, reliable, and cost-effective manner, has transformed hypertension genetics research. This is accompanied by the presence of international consortia that have offered unprecedentedly large sample sizes for genome-wide association studies (GWASs). While GWAS for hypertension and BP have identified more than 60 loci, variants in these loci are associated with modest effects on BP and in aggregate can explain less than 3% of the variance in BP. The aims of this thesis are to study the genetic and environmental factors that influence BP and hypertension traits in the Scottish population, by performing several genetic epidemiological analyses. In the first part of this thesis, it aims to study the burden of hypertension in the Scottish population, along with assessing the familial aggregation and heritialbity of BP and hypertension traits. In the second part, it aims to validate the association of common SNPs reported in the large GWAS and to estimate the variance explained by these variants. In this thesis, comprehensive genetic epidemiology analyses were performed on Generation Scotland: Scottish Family Health Study (GS:SFHS), one of the largest population-based family design studies. The availability of clinical, biological samples, self-reported information, and medical records for study participants has allowed several assessments to be performed to evaluate factors that influence BP variation in the Scottish population. Of the 20,753 subjects genotyped in the study, a total of 18,470 individuals (grouped into 7,025 extended families) passed the stringent quality control (QC) criteria and were available for all subsequent analysis. Based on the BP-lowering treatment exposure sources, subjects were further classified into two groups. First, subjects with both a self-reported medications (SRMs) history and electronic-prescription records (EPRs; n =12,347); second, all the subjects with at least one medication history source (n =18,470). In the first group, the analysis showed a good concordance between SRMs and EPRs (kappa =71%), indicating that SRMs can be used as a surrogate to assess the exposure to BP-lowering medication in GS:SFHS participants. Although both sources suffer from some limitations, SRMs can be considered the best available source to estimate the drug exposure history in those without EPRs. The prevalence of hypertension was 40.8% with higher prevalence in men (46.3%) compared to women (35.8%). The prevalence of awareness, treatment and controlled hypertension as defined by the study definition were 25.3%, 31.2%, and 54.3%, respectively. These findings are lower than similar reported studies in other populations, with the exception of controlled hypertension prevalence, which can be considered better than other populations. Odds of hypertension were higher in men, obese or overweight individuals, people with a parental history of hypertension, and those living in the most deprived area of Scotland. On the other hand, deprivation was associated with higher odds of treatment, awareness and controlled hypertension, suggesting that people living in the most deprived area may have been receiving better quality of care, or have higher comorbidity levels requiring greater engagement with doctors. These findings highlight the need for further work to improve hypertension management in Scotland. The family design of GS:SFHS has allowed family-based analysis to be performed to assess the familial aggregation and heritability of BP and hypertension traits. The familial correlation of BP traits ranged from 0.07 to 0.20, and from 0.18 to 0.34 for parent-offspring pairs and sibling pairs, respectively. A higher correlation of BP traits was observed among first-degree relatives than other types of relative pairs. A variance-component model that was adjusted for sex, body mass index (BMI), age, and age-squared was used to estimate heritability of BP traits, which ranged from 24% to 32% with pulse pressure (PP) having the lowest estimates. The genetic correlation between BP traits showed a high correlation between systolic (SBP), diastolic (DBP) and mean arterial pressure (MAP) (G: 81% to 94%), but lower correlations with PP (G: 22% to 78%). The sibling recurrence risk ratio (λS) for hypertension and treatment were calculated as 1.60 and 2.04 respectively. These findings confirm the genetic components of BP traits in GS:SFHS, and justify further work to investigate genetic determinants of BP. Genetic variants reported in the recent large GWAS of BP traits were selected for genotyping in GS:SFHS using a custom designed TaqMan® OpenArray®. The genotyping plate included 44 single nucleotide polymorphisms (SNPs) that have been previously reported to be associated with BP or hypertension at genome-wide significance level. A linear mixed model that is adjusted for age, age-squared, sex, and BMI was used to test for the association between the genetic variants and BP traits. Of the 43 variants that passed the QC, 11 variants showed statistically significant association with at least one BP trait. The phenotypic variance explained by these variant for the four BP traits were 1.4%, 1.5%, 1.6%, and 0.8% for SBP, DBP, MAP, and PP, respectively. The association of genetic risk score (GRS) that were constructed from selected variants has showed a positive association with BP level and hypertension prevalence, with an average effect of one mmHg increase with each 0.80 unit increases in the GRS across the different BP traits. The impact of BP-lowering medication on the genetic association study for BP traits has been established, with typical practice of adding a fixed value (i.e. 15/10 mmHg) to the measured BP values to adjust for BP treatment. Using the subset of participants with the two treatment exposure sources (i.e. SRMs and EPRs), the influence of using either source to justify the addition of fixed values in SNP association signal was analysed. BP phenotypes derived from EPRs were considered the true phenotypes, and those derived from SRMs were considered less accurate, with some phenotypic noise. Comparing SNPs association signals between the four BP traits in the two model derived from the different adjustments showed that MAP was the least impacted by the phenotypic noise. This was suggested by identifying the same overlapped significant SNPs for the two models in the case of MAP, while other BP traits had some discrepancy between the two sources
Resumo:
Dengue fever is one of the most important mosquito-borne diseases worldwide and is caused by infection with dengue virus (DENV). The disease is endemic in tropical and sub-tropical regions and has increased remarkably in the last few decades. At present, there is no antiviral or approved vaccine against the virus. Treatment of dengue patients is usually supportive, through oral or intravenous rehydration, or by blood transfusion for more severe dengue cases. Infection of DENV in humans and mosquitoes involves a complex interplay between the virus and host factors. This results in regulation of numerous intracellular processes, such as signal transduction and gene transcription which leads to progression of disease. To understand the mechanisms underlying the disease, the study of virus and host factors is therefore essential and could lead to the identification of human proteins modulating an essential step in the virus life cycle. Knowledge of these human proteins could lead to the discovery of potential new drug targets and disease control strategies in the future. Recent advances of high throughput screening technologies have provided researchers with molecular tools to carry out investigations on a large scale. Several studies have focused on determination of the host factors during DENV infection in human and mosquito cells. For instance, a genome-wide RNA interference (RNAi) screen has identified host factors that potentially play an important role in both DENV and West Nile virus replication (Krishnan et al. 2008). In the present study, a high-throughput yeast two-hybrid screen has been utilised in order to identify human factors interacting with DENV non-structural proteins. From the screen, 94 potential human interactors were identified. These include proteins involved in immune signalling regulation, potassium voltage-gated channels, transcriptional regulators, protein transporters and endoplasmic reticulum-associated proteins. Validation of fifteen of these human interactions revealed twelve of them strongly interacted with DENV proteins. Two proteins of particular interest were selected for further investigations of functional biological systems at the molecular level. These proteins, including a nuclear-associated protein BANP and a voltage-gated potassium channel Kv1.3, both have been identified through interaction with the DENV NS2A. BANP is known to be involved in NF-kB immune signalling pathway, whereas, Kv1.3 is known to play an important role in regulating passive flow of potassium ions upon changes in the cell transmembrane potential. This study also initiated a construction of an Aedes aegypti cDNA library for use with DENV proteins in Y2H screen. However, several issues were encountered during the study which made the library unsuitable for protein interaction analysis. In parallel, innate immune signalling was also optimised for downstream analysis. Overall, the work presented in this thesis, in particular the Y2H screen provides a number of human factors potentially targeted by DENV during infection. Nonetheless, more work is required to be done in order to validate these proteins and determine their functional properties, as well as testing them with infectious DENV to establish a biological significance. In the long term, data from this study will be useful for investigating potential human factors for development of antiviral strategies against dengue.
Resumo:
G protein-coupled receptors (GPCRs) are seven-pass integral membrane proteins that act as transducers of extracellular signals across the lipid bilayer. Their location and involvement in basic and pathological physiological processes has secured their role as key targets for pharmaceutical intervention. GPCRs are targeted by many of the best-selling drugs on the market and there are a substantial number of GPCRs that are yet to be characterised; these could offer interest for therapeutic targeting. GPR35 is one such receptor that, as a result of gene knockout and genome wide association studies, has attracted interest through its association with cardiovascular and gastrointestinal disease. Elucidation of the basic physiological function of GPR35 has, however, been difficult due a paucity of potent and selective ligands in addition to a lack of consensus on the endogenous ligand. Herein, a focussed drug discovery effort was carried out to identify agonists of GPR35. Various in vitro cellular assays were employed in conjunction with N- or C-terminally manipulated forms of the receptor to investigate GPR35’s signalling profile and to provide an assay format suitable for the characterisation of newly identified ligands. Although GPR35 associates with both Gαi/o and Gα13 families of small heterotrimeric G proteins, the G protein-independent β-arrestin-2 recruitment format was found to be the most suited to drug screening efforts. Small molecule compound screening, carried out in conjunction with the Medical Research Council Technology, identified compound 1 as the most potent ligand of human GPR35 reported at that time. However, the lower efficacy and potency of compound 1 at the rodent species orthologues of GPR35 prevented its use in in vivo studies. A subsequent effort, carried out with Novartis, focused on mast cell stabilisers as putative agonists of GPR35, revealed lodoxamide and bufrolin as highly potent agonists that activated human and rat GPR35 with equal potency. This finding offered–for the first time–the opportunity to employ the same GPR35 ligand between species at a similar concentration, an important factor to consider when translating rodent in vivo functional studies to those in man. Additionally, using molecular modelling and site directed mutagenesis studies, these newly identified compounds were used to aid characterisation of the ligand binding pockets of human and rat GPR35 to reveal the molecular basis of species selectivity at this receptor. In summary, this research effort presents GPR35 tool compounds that can now be used to dissect the basic biology of GPR35 and investigate its contribution to disease.
Resumo:
Cellular senescence is a stable arrest of cell proliferation induced by several factors such as activated oncogenes, oxidative stress and shortening of telomeres. Senescence acts as a tumour suppression mechanism to halt the progression of cancer. However, senescence may also impact negatively upon tissue regeneration, thus contributing to the effects of ageing. The eukaryotic genome is controlled by various modes of transcriptional and translational regulation. Focus has therefore centred on the role of long non- coding RNAs (lncRNAs) in regulating the genome. Accordingly, understanding how lncRNAs function to regulate the senescent genome is integral to improving our knowledge and understanding of tumour suppression and ageing. Within this study, I set out to investigate the expression of lncRNAs’ expression within models of senescence. Through a custom expression array, I have shown that expression of multiple different lncRNAs is up-regulated and down regulated in IMR90 replicative senescent fibroblasts and oncogene-induced senescent melanocytes. LncRNA expression was determined to be specific to stable senescence-associated cell arrest and predominantly within the nucleus of senescent cells. In order to examine the function of lncRNA expression in senescence, I selected lncRNA transcript ENST0000430998 (lncRNA_98) to focus my investigations upon. LncRNA_98 was robustly upregulated within multiple models of senescence and efficiently depleted using anti-sense oligonucleotide technology. Characterisation and unbiased RNA-sequencing of lncRNA_98 deficient senescent cells highlighted a list of genes that are regulated by lncRNA_98 expression in senescent cells and may regulate aspects of the senescence program. Specifically, the formation of SAHF was impeded upon depletion of lncRNA_98 expression and levels of total pRB protein expression severely decreased. Validation and recapitulation of consequences of pRB depletion was confirmed through lncRNA_98 knock-out cells generated using CRISPR technology. Surprisingly, inhibition of ATM kinase functions permitted the restoration of pRB protein levels within lncRNA_98 deficient cells. I propose that lncRNA_98 antagonizes the ability of ATM kinase to downregulate pRB expression at a post-transcriptional level, thereby potentiating senescence. Furthermore, lncRNA expression was detected within fibroblasts of old individuals and visualised within senescent melanocytes in human benign nevi, a barrier to melanoma progression. Conversely, mining of 337 TCGA primary melanoma data sets highlighted that the lncRNA_98 gene and its expression was lost from a significant proportion of melanoma samples, consistent with lncRNA_98 having a tumour suppressor functions. The data presented in this study illustrates that lncRNA_98 expression has a regulatory role over pRB expression in senescence and may regulate aspects of tumourigenesis and ageing.
Resumo:
Orthobunyaviruses are the largest genus within the Bunyaviridae family, with over 170 named viruses classified into 18 serogroups (Elliott and Blakqori, 2001; Plyusnin et al., 2012). Orthobunyaviruses are transmitted by arthropods and have a tripartite negative sense RNA genome, which encodes 4 structural proteins and 2 non-structural proteins. The non-structural protein NSs is the primary virulence factor of orthobunyaviruses and potent antagonist of the type I interferon (IFN) response. However, sequencing studies have identified pathogenic viruses that lack the NSs protein (Mohamed et al., 2009; Gauci et al., 2010). The work presented in this thesis describes the molecular and biological characterisation of divergent orthobunyaviruses. Data on plaque morphology, growth kinetics, protein profiles, sensitivity to IFN and activation of the type I IFN system are presented for viruses in the Anopheles A, Anopheles B, Capim, Gamboa, Guama, Minatitlan, Nyando, Tete and Turlock serogroups. These are complemented with complete genome sequencing and phylogenetic analysis. Low activation of IFN by Tete serogroup viruses, which naturally lack an NSs protein, was also further investigated by the development of a reverse genetics system for Batama virus (BMAV). Recombinant viruses with mutations in the virus nucleocapsid protein amino terminus showed higher activation of type I IFN in vitro and data suggests that low levels of IFN are due to lower activation rather than active antagonism. The anti-orthobunyavirus activity of IFN-stimulated genes IFI44, IFITMs and human and ovine BST2 were also studied, revealing that activity varies not only within the orthobunyavirus genus and virus serogroups but also within virus species. Furthermore, there was evidence of active antagonism of the type I IFN response and ISGs by non-NSs viruses. In summary, the results show that pathogenicity in man and antagonism of the type I IFN response in vitro cannot be predicted by the presence, or absence, of an NSs ORF. They also highlight problems in orthobunyavirus classification with discordance between classical antigen based data and phylogenetic analysis.
Resumo:
Although the value of primary forests for biodiversity conservation is well known, the potential biodiversity and conservation value of regenerating forests remains controversial. Many factors likely contribute to this, including: 1. the variable ages of regenerating forests being studied (often dominated by relatively young regenerating forests); 2. the potential for confounding on-going human disturbance (such as logging and hunting); 3. the relatively low number of multi-taxa studies; 4. the lack of studies that directly compare different historic disturbances within the same location; 5. contrasting patterns from different survey methodologies and the paucity of knowledge on the impacts across different vertical levels of rainforest biodiversity (often due to a lack of suitable methodologies available to assess them). We also know relatively little as to how biodiversity is affected by major current impacts, such as unmarked rainforest roads, which contribute to this degradation of habitat and fragmentation. This thesis explores the potential biodiversity value of regenerating rainforests under the best of scenarios and seeks to understand more about the impact of current human disturbance to biodiversity; data comes from case studies from the Manu and Sumaco Biosphere Reserves in the Western Amazon. Specifically, I compare overall biodiversity and conservation value of a best case regenerating rainforest site with a selection of well-studied primary forest sites and with predicted species lists for the region; including a focus on species of key conservation concern. I then investigate the biodiversity of the same study site in reference to different types of historic anthropogenic disturbance. Following this I investigate the impacts to biodiversity from an unmarked rainforest road. In order to understand more about the differential effects of habitat disturbance on arboreal diversity I directly assess how patterns of butterfly biodiversity vary between three vertical strata. Although assessments within the canopy have been made for birds, invertebrates and bats, very few studies have successfully targeted arboreal mammals. I therefore investigate the potential of camera traps for inventorying arboreal mammal species in comparison with traditional methodologies. Finally, in order to investigate the possibility that different survey methodologies might identify different biodiversity patterns in habitat disturbance assessments, I investigate whether two different but commonly used survey methodologies used to assess amphibians, indicate the same or different responses of amphibian biodiversity to historic habitat change by people. The regenerating rainforest study site contained high levels of species richness; both in terms of alpha diversity found in nearby primary forest areas (87% ±3.5) and in terms of predicted primary forest diversity from the region (83% ±6.7). This included 89% (39 out of 44) of the species of high conservation concern predicted for the Manu region. Faunal species richness in once completely cleared regenerating forest was on average 13% (±9.8) lower than historically selectively logged forest. The presence of the small unmarked road significantly altered levels of faunal biodiversity for three taxa, up to and potentially beyond 350m into the forest interior. Most notably, the impact on biodiversity extended to at least 32% of the whole reserve area. The assessment of butterflies across strata showed that different vertical zones within the same rainforest responded differently in areas with different historic human disturbance. A comparison between forest regenerating after selective logging and forest regenerating after complete clearance, showed that there was a 17% greater reduction in canopy species richness in the historically cleared forest compared with the terrestrial community. Comparing arboreal camera traps with traditional ground-based techniques suggests that camera traps are an effective tool for inventorying secretive arboreal rainforest mammal communities and detect a higher number of cryptic species. Finally, the two survey methodologies used to assess amphibian communities identified contrasting biodiversity patterns in a human modified rainforest; one indicated biodiversity differences between forests with different human disturbance histories, whereas the other suggested no differences between forest disturbance types. Overall, in this thesis I find that the conservation and biodiversity value of regenerating and human disturbed tropical forest can potentially contribute to rainforest biodiversity conservation, particularly in the best of circumstances. I also highlight the importance of utilising appropriate study methodologies that to investigate these three-dimensional habitats, and contribute to the development of methodologies to do so. However, care should be taken when using different survey methodologies, which can provide contrasting biodiversity patterns in response to human disturbance.
Resumo:
The social landscape is filled with an intricate web of species-specific desired objects and course of actions. Humans are highly social animals and, as they navigate this landscape, they need to produce adapted decision-making behaviour. Traditionally social and non-social neural mechanisms affecting choice have been investigated using different approaches. Recently, in an effort to unite these findings, two main theories have been proposed to explain how the brain might encode social and non-social motivational decision-making: the extended common currency and the social valuation specific schema (Ruff & Fehr 2014). One way to test these theories is to directly compare neural activity related to social and non-social decision outcomes within the same experimental setting. Here we address this issue by focusing on the neural substrates of social and non-social forms of uncertainty. Using functional magnetic resonance imaging (fMRI) we directly compared the neural representations of reward and risk prediction and errors (RePE and RiPE) in social and non- social situations using gambling games. We used a trust betting game to vary uncertainty along a social dimension (trustworthiness), and a card game (Preuschoff et al. 2006) to vary uncertainty along a non-social dimension (pure risk). The trust game was designed to maintain the same structure of the card game. In a first study, we exposed a divide between subcortical and cortical regions when comparing the way these regions process social and non-social forms of uncertainty during outcome anticipation. Activity in subcortical regions reflected social and non-social RePE, while activity in cortical regions correlated with social RePE and non-social RiPE. The second study focused on outcome delivery and integrated the concept of RiPE in non-social settings with that of fairness and monetary utility maximisation in social settings. In particular these results corroborate recent models of anterior insula function (Singer et al. 2009; Seth 2013), and expose a possible neural mechanism that weights fairness and uncertainty but not monetary utility. The third study focused on functionally defined regions of the early visual cortex (V1) showing how activity in these areas, traditionally considered only visual, might reflect motivational prediction errors in addition to known perceptual prediction mechanisms (den Ouden et al 2012). On the whole, while our results do not support unilaterally one or the other theory modeling the underlying neural dynamics of social and non-social forms of decision making, they provide a working framework where both general mechanisms might coexist.
Resumo:
Acute myeloid leukemia (AML) involves the proliferation, abnormal survival and arrest of cells at a very early stage of myeloid cell differentiation. The biological and clinical heterogeneity of this disease complicates treatment and highlights the significance of understanding the underlying causes of AML, which may constitute potential therapeutic targets, as well as offer prognostic information. Tribbles homolog 2 (Trib2) is a potent murine oncogene capable of inducing transplantable AML with complete penetrance. The pathogenicity of Trib2 is attributed to its ability to induce proteasomal degradation of the full length isoform of the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα p42). The role of TRIB2 in human AML cells, however, has not been systematically investigated or targeted. Across human cancers, TRIB2 oncogenic activity was found to be associated with its elevated expression. In the context of AML, TRIB2 overexpression was suggested to be associated with the large and heterogeneous subset of cytogenetically normal AML patients. Based upon the observation that overexpression of TRIB2 has a role in cellular transformation, the effect of modulating its expression in human AML was examined in a human AML cell line that expresses high levels of TRIB2, U937 cells. Specific suppression of TRIB2 led to impaired cell growth, as a consequence of both an increase in apoptosis and a decrease in cell proliferation. Consistent with these in vitro results, TRIB2 silencing strongly reduced progression of the U937 in vivo xenografts, accompanied by detection of a lower spleen weight when compared with mice transplanted with TRIB2- expressing control cells. Gene expression analysis suggested that TRIB2 modulates apoptosis and cell-cycle sensitivity by influencing the expression of a subset of genes known to have implications on these phenotypes. Furthermore, TRIB2 was found to be expressed in a significant subset of AML patient samples analysed. To investigate whether increased expression of this gene could be afforded prognostic significance, primary AML cells with dichotomized levels of TRIB2 transcripts were evaluated in terms of their xenoengraftment potential, an assay reported to correlate with disease aggressiveness observed in humans. A small cohort of analysed samples with higher TRIB2 expression did not associate with preferential leukaemic cell engraftment in highly immune-deficient mice, hence, not predicting for an adverse prognosis. However, further experiments including a larger cohort of well characterized AML patients would be needed to clarify TRIB2 significance in the diagnostic setting. Collectively, these data support a functional role for TRIB2 in the maintenance of the oncogenic properties of human AML cells and suggest TRIB2 can be considered a rational therapeutic target. Proteasome inhibition has emerged as an attractive target for the development of novel anti-cancer therapies and results from translational research and clinical trials support the idea that proteasome inhibitors should be considered in the treatment of AML. The present study argued that proteasome inhibition would effectively inhibit the function of TRIB2 by abrogating C/EBPα p42 protein degradation and that it would be an effective pharmacological targeting strategy in TRIB2-positive AMLs. Here, a number of cell models expressing high levels of TRIB2 were successfully targeted by treatment with proteasome inhibitors, as demonstrated by multiple measurements that included increased cytotoxicity, inhibition of clonogenic growth and anti-AML activity in vivo. Mechanistically, it was shown that block of the TRIB2 degradative function led to an increase of C/EBPα p42 and that response was specific to the TRIB2-C/EBPα axis. Specificity was addressed by a panel of experiments showing that U937 cells (express detectable levels of endogenous TRIB2 and C/EBPα) treated with the proteasome inhibitor bortezomib (Brtz) displayed a higher cytotoxic response upon TRIB2 overexpression and that ectopic expression of C/EBPα rescued cell death. Additionally, in C/EBPα-negative leukaemia cells, K562 and Kasumi 1, Brtz-induced toxicity was not increased following TRIB2 overexpression supporting the specificity of the compound on the TRIB2-C/EBPα axis. Together these findings provide pre-clinical evidence that TRIB2- expressing AML cells can be pharmacologically targeted with proteasome inhibition due, in part, to blockage of the TRIB2 proteolytic function on C/EBPα p42. A large body of evidence indicates that AML arises through the stepwise acquisition of genetic and epigenetic changes. Mass spectrometry data has identified an interaction between TRIB2 and the epigenetic regulator Protein Arginine Methyltransferase 5 (PRMT5). Following assessment of TRIB2‟s role in AML cell survival and effective targeting of the TRIB2-C/EBPα degradation pathway, a putative TRIB2/PRMT5 cooperation was investigated in order to gain a deeper understanding of the molecular network in which TRIB2 acts as a potent myeloid oncogene. First, a microarray data set was interrogated for PRMT5 expression levels and the primary enzyme responsible for symmetric dimethylation was found to be transcribed at significantly higher levels in AML patients when compared to healthy controls. Next, depletion of PRMT5 in the U937 cell line was shown to reduce the transformative phenotype in the high expressing TRIB2 AML cells, which suggests that PRMT5 and TRIB2 may cooperate to maintain the leukaemogenic potential. Importantly, PRMT5 was identified as a TRIB2-interacting protein by means of a protein tagging approach to purify TRIB2 complexes from 293T cells. These findings trigger further research aimed at understanding the underlying mechanism and the functional significance of this interplay. In summary, the present study provides experimental evidence that TRIB2 has an important oncogenic role in human AML maintenance and, importantly in such a molecularly heterogeneous disease, provides the rational basis to consider proteasome inhibition as an effective targeting strategy for AML patients with high TRIB2 expression. Finally, the identification of PRMT5 as a TRIB2-interacting protein opens a new level of regulation to consider in AML. This work may contribute to our further understanding and therapeutic strategies in acute leukaemias.
Resumo:
Vertebrate genomes are organised into a variety of nuclear environments and chromatin states that have profound effects on the regulation of gene transcription. This variation presents a major challenge to the expression of transgenes for experimental research, genetic therapies and the production of biopharmaceuticals. The majority of transgenes succumb to transcriptional silencing by their chromosomal environment when they are randomly integrated into the genome, a phenomenon known as chromosomal position effect (CPE). It is not always feasible to target transgene integration to transcriptionally permissive “safe harbour” loci that favour transgene expression, so there remains an unmet need to identify gene regulatory elements that can be added to transgenes which protect them against CPE. Dominant regulatory elements (DREs) with chromatin barrier (or boundary) activity have been shown to protect transgenes from CPE. The HS4 element from the chicken beta-globin locus and the A2UCOE element from a human housekeeping gene locus have been shown to function as DRE barriers in a wide variety of cell types and species. Despite rapid advances in the profiling of transcription factor binding, chromatin states and chromosomal looping interactions, progress towards functionally validating the many candidate barrier elements in vertebrates has been very slow. This is largely due to the lack of a tractable and efficient assay for chromatin barrier activity. In this study, I have developed the RGBarrier assay system to test the chromatin barrier activity of candidate DREs at pre-defined isogenic loci in human cells. The RGBarrier assay consists in a Flp-based RMCE reaction for the integration of an expression construct, carrying candidate DREs, in a pre-characterised chromosomal location. The RGBarrier system involves the tracking of red, green and blue fluorescent proteins by flow cytometry to monitor on-target versus off-target integration and transgene expression. The analysis of the reporter (GFP) expression for several weeks gives a measure of the protective ability of each candidate elements from chromosomal silencing. This assay can be scaled up to test tens of new putative barrier elements in the same chromosomal context in parallel. The defined chromosomal contexts of the RGBarrier assays will allow for detailed mechanistic studies of chromosomal silencing and DRE barrier element action. Understanding these mechanisms will be of paramount importance for the design of specific solutions for overcoming chromosomal silencing in specific transgenic applications.
Resumo:
Stem cell therapy for ischaemic stroke is an emerging field in light of an increasing number of patients surviving with permanent disability. Several allogenic and autologous cells types are now in clinical trials with preliminary evidence of safety. Some clinical studies have reported functional improvements in some patients. After initial safety evaluation in a Phase 1 study, the conditionally immortalised human neural stem cell line CTX0E03 is currently in a Phase 2 clinical trial (PISCES-II). Previous pre-clinical studies conducted by ReNeuron Ltd, showed evidence of functional recovery in the Bilateral Asymmetry test up to 6 weeks following transplantation into rodent brain, 4 weeks after middle cerebral artery occlusion. Resting-state fMRI is increasingly used to investigate brain function in health and disease, and may also act as a predictor of recovery due to known network changes in the post-stroke recovery period. Resting-state methods have also been applied to non-human primates and rodents which have been found to have analogous resting-state networks to humans. The sensorimotor resting-state network of rodents is impaired following experimental focal ischaemia of the middle cerebral artery territory. However, the effects of stem cell implantation on brain functional networks has not previously been investigated. Prior studies assessed sensorimotor function following sub-cortical implantation of CTX0E03 cells in the rodent post-stroke brain but with no MRI assessments of functional improvements. This thesis presents research on the effect of sub-cortical implantation of CTX0E03 cells on the resting- state sensorimotor network and sensorimotor deficits in the rat following experimental stroke, using protocols based on previous work with this cell line. The work in this thesis identified functional tests of appropriate sensitivity for long-term dysfunction suitable for this laboratory, and investigated non-invasive monitoring of physiological variables required to optimize BOLD signal stability within a high-field MRI scanner. Following experimental stroke, rats demonstrated expected sensorimotor dysfunction and changes in the resting-state sensorimotor network. CTX0E03 cells did not improve post-stroke functional outcome (compared to previous studies) and with no changes in resting-state sensorimotor network activity. However, in control animals, we observed changes in functional networks due to the stereotaxic procedure. This illustrates the sensitivity of resting-state fMRI to stereotaxic procedures. We hypothesise that the damage caused by cell or vehicle implantation may have prevented functional and network recovery which has not been previously identified due to the application of different functional tests. The findings in this thesis represent one of few pre-clinical studies in resting-state fMRI network changes post-stroke and the only to date applying this technique to evaluate functional outcomes following a clinically applicable human neural stem cell treatment for ischaemic stroke. It was found that injury caused by stereotaxic injection should be taken into account when assessing the effectiveness of treatment.
Resumo:
This thesis proposes the development of a narrative methodology in the British Methodist Church. Such a methodology embraces and communicates both felt experience and critical theological thinking, thus producing and presenting a theology that might have a constructive transformative impact on wider society. In chapter one I explore the ways in which the Church speaks in public, identify some of the challenges it faces, and consider four models of engagement. If the Church is to engage in public discourses then I argue that its words need to be relevant and connect with people’s experiences. To ground the thinking I focus on the context of the British Methodist Church and explore how the Church engages in theological reflection through the lens of its thinking on issues of human sexuality. Chapter two reviews how theological reflection is undertaken in the British Methodist Church. I describe how the Methodist Quadrilateral of Scripture, tradition, reason and experience remains a foundational framework for theological reflection within the Methodist Church and consider the impact of institutional processes and the ways in which the Methodist people actually engage with theological thinking. The third and fourth chapters focus on how the British Methodist Church has produced its theology of human sexuality, giving particular attention to the use of personal and sexual stories in this process. I find that whilst there has been a desire to listen to the stories of the Methodist people, there has not been a corresponding interrogation or analysis of their stories so as to enable robust and constructive theological reflection on these experiences. Using resources from Foucauldian approaches to discourse analysis, I critique key statements and the processes involved in their production, offering an analysis of this body of theological thinking and indicating where possibilities for alternative ways of thinking and acting arise. The proposed methodology draws upon resources from social science methodologies, and in chapter five I look at the use of personal experience and relevant strategies of inquiry that prompt reflection on the hermeneutical process and employ narrative approaches in undertaking, analysing and presenting research. The exploration shows that qualitative research methodologies offer resources and methods of inquiry that could help the Church to engage with personal stories in its theological thinking in a robust, interrogative and imaginative way. In chapter six an examination of story and narrative is undertaken, to show how they have been understood as ways of knowing and how they relate to theological inquiry. Whilst acknowledging some of the limitations of narrative, I indicate how it offers constructive possibilities for theological reflection and could be a means for the British Methodist Church to engage in public discourse. This is explored further in chapter seven, which looks in more detail at how the British Methodist Church has used narrative in its theological thinking, and outlines areas requiring further attention in order for a narrative theological methodology to be developed, namely: attention to the question ‘whose experience?’; investigation of issues of power and the dynamics involved in the process of the production of theological thought; how personal stories and experiences are interrogated and how narrative is constructed; and how narrative might be employed within the Methodist Quadrilateral. The final chapter considers the advantages and limitations of such an approach, whether the development of such a method is possible in the Methodist Church today and its potential for helping the Church to engage in public discourse more effectively. I argue that this methodology can provoke new theological insights and enable new ways of being in the world
Resumo:
Congenital vertebral malformations are common in brachycephalic “screw-tailed” dog breeds such as French bulldogs, English bulldogs, Boston terriers, and Pugs. Those vertebral malformations disrupt the normal vertebral column anatomy and biomechanics, potentially leading to deformity of the vertebral column and subsequent neurological dysfunction. The initial aim of this work was to study and determine whether the congenital vertebral malformations identified in those breeds could be translated in a radiographic classification scheme used in humans to give an improved classification, with clear and well-defined terminology, with the expectation that this would facilitate future study and clinical management in the veterinary field. Therefore, two observers who were blinded to the neurologic status of the dogs classified each vertebral malformation based on the human classification scheme of McMaster and were able to translate them successfully into a new classification scheme for veterinary use. The following aim was to assess the nature and the impact of vertebral column deformity engendered by those congenital vertebral malformations in the target breeds. As no gold standard exists in veterinary medicine for the calculation of the degree of deformity, it was elected to adapt the human equivalent, termed the Cobb angle, as a potential standard reference tool for use in veterinary practice. For the validation of the Cobb angle measurement method, a computerised semi-automatic technique was used and assessed by multiple independent observers. They observed not only that Kyphosis was the most common vertebral column deformity but also that patients with such deformity were found to be more likely to suffer from neurological deficits, more especially if their Cobb angle was above 35 degrees.